【題目】已知正整數(shù)n都可以唯一表示為 ①的形式,其中m為非負(fù)整數(shù),(,),.試求①中的數(shù)列嚴(yán)格單調(diào)遞增或嚴(yán)格單調(diào)遞減的所有正整數(shù)n的和.
【答案】
【解析】
設(shè)A和B分別表示①中數(shù)列嚴(yán)格單調(diào)遞增和遞減的所有正整數(shù)構(gòu)成的集合.符號S(M)表示數(shù)集M中所有數(shù)的和,并將滿足①式的正整數(shù)記為.
把集合A分成如下兩個不交子集和.
我們有.
對任意,令,則是到的雙射.
由此得,從而.
又對任意,令,
則g是B到的雙射,其中.
因為
所以B中共有個元素,因此
.
又令表示A中最高位數(shù)的正整數(shù)全體,A中其余的數(shù)和零所構(gòu)成的集合記為,
則.
對任意,令
則是B到的雙射,其中.
所以 .
最后對任意,令.
則是到B的雙射,其中.
所以
.
于是,
解之得,.
由于A和B中都含有1,2,…,8,因此所求正整數(shù)的和等于.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為“月收入以5500元為分界點對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計 | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計 | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。
參考公式:,其中.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,均垂直于平面,,,,.
(1)過的平面與平面垂直,請在圖中作出截此多面體所得的截面,并說明理由;
(2)若,,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的左、右焦點為,右頂點為,上頂點為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點的一點,以線段為直徑的圓經(jīng)過點,經(jīng)過原點的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點M到定點F1(-2,0)和F2(2,0)的距離之和為.
(1)求動點M軌跡C的方程;
(2)設(shè)N(0,2),過點P(-1,-2)作直線l,交橢圓C于不同于N的A,B兩點,直線NA,NB的斜率分別為k1,k2,問k1+k2是否為定值?若是的求出這個值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形CDEF中,四邊形ABCD為正方形,且,將沿著線段AD折起,同時將沿著線段BC折起,使得E,F兩點重合為點P.
求證:平面平面ABCD;
求直線PB與平面PCD的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分市某調(diào)查機(jī)構(gòu)針對該市市場占有率最高的兩種網(wǎng)絡(luò)外賣企業(yè)以下簡稱外賣A、外賣的服務(wù)質(zhì)量進(jìn)行了調(diào)查,從使用過這兩種外賣服務(wù)的市民中隨機(jī)抽取了1000人,每人分別對這兩家外賣企業(yè)評分,滿分均為100分,并將分?jǐn)?shù)分成5組,得到以下頻數(shù)分布表:
分?jǐn)?shù) 人數(shù) 種類 | |||||
外賣A | 50 | 150 | 100 | 400 | 300 |
外賣B | 100 | 100 | 300 | 200 | 300 |
表中得分越高,說明市民對網(wǎng)絡(luò)外賣服務(wù)越滿意若得分不低于60分,則表明該市民對網(wǎng)絡(luò)外賣服務(wù)質(zhì)量評價較高現(xiàn)將分?jǐn)?shù)按“服務(wù)質(zhì)量指標(biāo)”劃分成以下四個檔次:
分?jǐn)?shù) | ||||
服務(wù)質(zhì)量指標(biāo) | 0 | 1 | 2 | 3 |
視頻率為概率,解決下列問題:
從該市使用過外賣A的市民中任選5人,記對外賣A服務(wù)質(zhì)量評價較高的人數(shù)為X,求X的數(shù)學(xué)期望.
從參與調(diào)查的市民中隨機(jī)抽取1人,試求其評分中外賣A的“服務(wù)質(zhì)量指標(biāo)”與外賣B的“服務(wù)質(zhì)量指標(biāo)”的差的絕對值等于2的概率;
在M市工作的小王決定從外賣A、外賣B這兩種網(wǎng)絡(luò)外賣中選擇一種長期使用,如果從這兩種外賣的“服務(wù)質(zhì)量指標(biāo)”的期望角度看,他選擇哪種外賣更合適?試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面上的一列點簡記為,若由構(gòu)成的數(shù)列滿足,(其中是與軸正方向相同的單位向量),則稱為“點列”.
(1)試判斷:,...是否為“點列”?并說明理由.
(2)若為“點列”,且點在點的右上方.任取其中連續(xù)三點,判斷的形狀(銳角,直角,鈍角三角形),并證明.
(3)若為“點列”,正整數(shù)滿足:,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,對每一個正整數(shù),該數(shù)列前項的最大值記為,第項之后各項的最小值記為,記.
(1)若數(shù)列的通項公式為,求數(shù)列的通項公式;
(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;
(3)若對任意恒成立,證明:數(shù)列的通項公式為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com