【題目】《周禮夏官馬質(zhì)》中記載“馬量三物:一日戎馬,二日田馬,三日駑馬”,其意思為馬按照品種可以分為三個(gè)等級,一等馬為戎馬,二等馬為田馬,三等馬為駑馬.假設(shè)在唐朝的某個(gè)王爺要將7匹馬(戎馬3匹,田馬、駑馬各2匹)賞賜給甲、乙、丙3人,每人至少2匹,則甲和乙都得到一等馬的分法總數(shù)為_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,函數(shù).
(1)求函數(shù)的最小正周期與圖象的對稱軸方程;
(2)若,,函數(shù)的最小值是,最大值是2,求實(shí)數(shù),的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,底面ABC,,,,D,E分別為棱BC,PC的中點(diǎn),點(diǎn)F在棱PA上,設(shè).
(1)當(dāng)時(shí),求異面直線DF與BE所成角的余弦值;
(2)試確定t的值,使二面角C-EF-D的平面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知底面,,,,,是上一點(diǎn).
(1)求證:平面平面;
(2)若是的中點(diǎn),且二面角的余弦值是,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某翻譯處有8名翻譯,其中有小張等3名英語翻譯,小李等3名日語翻譯,另外2名既能翻譯英語又能翻譯日語,現(xiàn)需選取5名翻譯參加翻譯工作,3名翻譯英語,2名翻譯日語,且小張與小李恰有1人選中,則有____種不同選取方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜率為的直線交拋物線于兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn).
(1)若點(diǎn)的橫坐標(biāo)等于0,求的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。
(1)求直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于,兩點(diǎn),若點(diǎn)的坐標(biāo)為,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列兩個(gè)命題,命題甲:平面α與平面β相交;命題乙:相交直線l,m都在平面α內(nèi),并且都不在平面β內(nèi),直線l,m中至少有一條與平面β相交.則甲是乙的( )
A.充分且必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,四邊形是平行四邊形,且.
(1)證明:平面;
(2)若與平面所成的角為45°,是的中點(diǎn),求異面直線與所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com