【題目】設數(shù)列的前項和為,則稱緊密數(shù)列”.

1)已知數(shù)列緊密數(shù)列,其前5項依次為,求的取值范圍;

2)若數(shù)列的前項和為,判斷是否是緊密數(shù)列,并說明理由;

3)設是公比為的等比數(shù)列,都是緊密數(shù)列,求的取值范圍.

【答案】(1) (2) 是“緊密數(shù)列”(3)

【解析】試題分析:

1)由題意得到關于x的不等式組,求解不等式組可得.

2由題意可得,結合反比例函數(shù)的性質討論可得,緊密數(shù)列

3由題意, 緊密數(shù)列,所以分類討論:

①當時數(shù)列緊密數(shù)列, 滿足題意.

②當時,結合等比數(shù)列前n項和公式有,對任意恒成立.討論可得:。┊時,滿足題意;ⅱ)當時, 不存在.

的取值范圍是

試題解析:

1)由題意得: ,所以.

2)由數(shù)列的前項和

所以, ,

因為對任意, ,即,所以, ,

緊密數(shù)列

3)由數(shù)列是公比為的等比數(shù)列,得,

因為緊密數(shù)列,所以

①當時, ,因為,

所以時,數(shù)列緊密數(shù)列,故滿足題意.

②當時, ,則,因為數(shù)列緊密數(shù)列,

所以,對任意恒成立.

。┊時, ,

,對任意恒成立.

因為, , ,

所以 ,

所以,當時, ,對任意恒成立.

ⅱ)當時, ,,對任意

恒成立.因為.所以,解得,

,此時不存在.

綜上所述, 的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著全民健康運動的普及,每天一萬步已經成為一種健康時尚,某學校為了教職工能夠健康工作,在全校范圍內倡導“每天一萬步”健康走活動,學校界定一人一天走路不足4千步為“健步常人”,不少于16千步為“健步超人”,其他人為“健步達人”,學校隨機抽取抽查人36名教職工,其每天的走步情況統(tǒng)計如下:

現(xiàn)對抽查的36人采用分層抽樣的方式選出6人,從選出的6人中隨機抽取2人進行調查.

(1)求這兩人健步走狀況一致的概率;

(2)求“健步超人”人數(shù)的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列滿足,數(shù)列滿足.

(1)求數(shù)列, 的通項公式;

(2)令,求數(shù)列的前項和;

(3)若,求對所有的正整數(shù)都有成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的 PK 賽,兩隊各由 4 名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽A隊選手獲勝的概率均為,且各局比賽結果相互獨立,比賽結束時A隊的得分高于B隊的得分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠有甲乙兩個車間,每個車間各有3臺機器.甲車間每臺機器每天發(fā)生故障的概率均為,乙車間3臺機器每天發(fā)生概率分別為.若一天內同一車間的機器都不發(fā)生故障可獲利2萬元,恰有一臺機器發(fā)生故障仍可獲利1萬元,恰有兩臺機器發(fā)生故障的利潤為0萬元,三臺機器發(fā)生故障要虧損3萬元.

(1)求乙車間每天機器發(fā)生故障的臺數(shù)的分布列;

(2)由于節(jié)能減排,甲乙兩個車間必須停產一個,以工廠獲得利潤的期望值為決策依據,你認為哪個車間停產比較合理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓ab0)經過點,且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知A0,b),Ba,0),點P是橢圓C上位于第三象限的動點,直線APBP分別將x軸、y軸于點MN,求證:|AN||BM|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經過定點P(3,5),傾斜角為.

(1)寫出直線l的參數(shù)方程和曲線C的標準方程.

(2)設直線l與曲線C相交于A,B兩點,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】針對國家提出的延遲退休方案,某機構進行了網上調查,所有參與調查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:

支持

保留

不支持

歲以下

歲以上(含歲)

(1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;

(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.

(3)在接受調查的人中,有人給這項活動打出的分數(shù)如下: , , , , , , , ,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,圓的極坐標方程為.

(1)求圓的直角坐標方程,并寫出圓心和半徑;

(2)若直線與圓交于兩點,求的最大值和最小值.

查看答案和解析>>

同步練習冊答案