【題目】某電視臺(tái)為了了解某社區(qū)居民對(duì)某娛樂(lè)節(jié)目的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該娛樂(lè)節(jié)目時(shí)間的頻率分布直方圖:

1)求實(shí)數(shù)的值;

2)根據(jù)統(tǒng)計(jì)結(jié)果,試估計(jì)觀眾觀看該娛樂(lè)節(jié)目時(shí)間的中位數(shù)(結(jié)果保留一位小數(shù));

3)從觀看時(shí)間在的人中用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人的觀看時(shí)間都在中的概率.

【答案】10.03241.73

【解析】

1)根據(jù)每個(gè)條形圖高的和等于,即可求得.

2)設(shè)中位數(shù)為,,解方程即可;

3)運(yùn)用分層抽樣求出各組的人數(shù),進(jìn)而求得概率.

解:(1)根據(jù)頻率分布直方圖可得.

2)設(shè)中位數(shù)為,則,解得.

3)由題知,抽取的6人中觀看時(shí)間在的有2人,記為,,在中的有4人,記為1,2,34,則從中隨機(jī)抽取2人有,,,,,,12,1314,23,24,3415種,其中都在中的有12,13,1423,24,346種,故所求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)新高考改革方案,某地高考由文理分科考試變?yōu)?/span>“3+3”模式考試.某學(xué)校為了解高一年425名學(xué)生選課情況,在高一年下學(xué)期進(jìn)行模擬選課,統(tǒng)計(jì)得到選課組合排名前4種如下表所示,其中物理、化學(xué)、生物為理科,政治、歷史、地理為文科,“√”表示選擇該科,“×”表示未選擇該科,根據(jù)統(tǒng)計(jì)數(shù)據(jù),下列判斷錯(cuò)誤的是

學(xué)科

人數(shù)

物理

化學(xué)

生物

政治

歷史

地理

124

×

×

×

101

×

×

×

86

×

×

×

74

×

×

×

A. 4種組合中,選擇生物學(xué)科的學(xué)生更傾向選擇兩理一文組合

B. 4種組合中,選擇兩理一文的人數(shù)多于選擇兩文一理的人數(shù)

C. 整個(gè)高一年段,選擇地理學(xué)科的人數(shù)多于選擇其他任一學(xué)科的人數(shù)

D. 整個(gè)高一年段,選擇物理學(xué)科的人數(shù)多于選擇生物學(xué)科的人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系O中,直線與拋物線2相交于A、B兩點(diǎn).

1)求證:命題“如果直線過(guò)點(diǎn)T3,0),那么3”是真命題;

2)寫(xiě)出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù).

(1)求證: 不是上的奇函數(shù);

(2)若上的單調(diào)函數(shù),求實(shí)數(shù)的值;

(3)若函數(shù)在區(qū)間上恰有3個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知F是拋物線C:的焦點(diǎn),過(guò)E(﹣l,0)的直線與拋物線分別交于A,B兩點(diǎn)(點(diǎn)A,B在x軸的上方).

(1)設(shè)直線AF,BF的斜率分別為,,證明:;

(2)若ABF的面積為4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A,B,C,D是直角坐標(biāo)系中不同的四點(diǎn),若,且,則下列說(shuō)法正確的是( ),

A.C可能是線段AB的中點(diǎn)

B.D可能是線段AB的中點(diǎn)

C.C、D可能同時(shí)在線段AB

D.C、D不可能同時(shí)在線段AB的延長(zhǎng)線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是雙曲線上的動(dòng)點(diǎn),是雙曲線的焦點(diǎn),M的平分線上一點(diǎn),且,某同學(xué)用以下方法研究:延長(zhǎng)于點(diǎn)N,可知為等腰三角形,且M的中點(diǎn),得,類似地:點(diǎn)是橢圓上的動(dòng)點(diǎn),橢圓的焦點(diǎn),M的平分線上一點(diǎn),且的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn),且面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)直線斜率為,且與橢圓的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)的導(dǎo)函數(shù),且,其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)求的極值;

(Ⅱ)若存在,使得不等式成立,試求實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng)時(shí),對(duì)于,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案