分析 (1)由Sn=$\frac{3{n}^{2}+n}{2}$,可得當(dāng)n=1時(shí),a1=2;當(dāng)n≥2時(shí),an=Sn-Sn-1,即可得出.
(2)bn=a2n-1=3(2n-1)-1=6n-4.利用等差數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵Sn=$\frac{3{n}^{2}+n}{2}$,
∴當(dāng)n=1時(shí),a1=2;當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{3{n}^{2}+n}{2}$-$[\frac{3}{2}(n-1)^{2}+\frac{1}{2}(n-1)]$=3n-1.當(dāng)n=1時(shí)也成立.
∴an=3n-1.
(2)bn=a2n-1=3(2n-1)-1=6n-4.
∴{bn}的前n項(xiàng)和為Tn=$\frac{n(2+6n-4)}{2}$=3n2-n.
點(diǎn)評 本題考查了遞推關(guān)系的應(yīng)用、等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
壽命(天) | 頻數(shù) | 頻率 |
[100,200) | 20 | 0.10 |
[200,300) | 30 | y |
[300,400) | 70 | 0.35 |
[400,500) | x | 0.15 |
[500,600) | 50 | 0.25 |
合計(jì) | 200 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com