【題目】已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求實數(shù)的值;
(2)若恒成立,求實數(shù)的取值范圍;
(3)證明:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)定義域為,設(shè).
(1)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(2)求證:;
(3)求證:對于任意的,總存在,滿足,并確定這樣的的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學(xué)生進行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:
分數(shù)不少于120分 | 分數(shù)不足120分 | 合計 | |
線上學(xué)習(xí)時間不少于5小時 | 4 | 19 | |
線上學(xué)習(xí)時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;
(2)在上述樣本中從分數(shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時間不少于5小時和線上學(xué)習(xí)時間不足5小時的學(xué)生共5名,若在這5名學(xué)生中隨機抽取2人,求至少1人每周線上學(xué)習(xí)時間不足5小時的概率.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:
①在區(qū)間內(nèi)單調(diào)遞增;
②在區(qū)間內(nèi)單調(diào)遞減;
③在區(qū)間內(nèi)單調(diào)遞增;
④是極小值點;
⑤是極大值點.
其中正確的是( )
A. ③⑤B. ②③C. ①④⑤D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】3月3日,武漢大學(xué)人民醫(yī)院的團隊在預(yù)印本平臺上發(fā)布了一項研究:在新冠肺炎病例的統(tǒng)計數(shù)據(jù)中,男性患者往往比女性患者多.研究者分析了1月1日~29日的6013份病例數(shù)據(jù),發(fā)現(xiàn)的患者為男性;進入重癥監(jiān)護病房的患者中,則有為男性.隨后,他們分析了武漢大學(xué)人民醫(yī)院的數(shù)據(jù).他們按照癥狀程度的不同進行分析,結(jié)果發(fā)現(xiàn),男性患者有為危重,而女性患者危重情況的為.也就是說男性的發(fā)病情況似乎普遍更嚴重.研究者總結(jié)道:“男性在新冠肺炎的傳播中扮演著重要的角色.”那么,病毒真的偏愛男性嗎?有一個中學(xué)生學(xué)習(xí)小組,在自己封閉的社區(qū)進行無接觸抽樣問卷調(diào)查,收集到男、女患者各50個數(shù)據(jù),統(tǒng)計如下:
輕—中度感染 | 重度(包括危重) | 總計 | |
男性患者 | |||
女性患者 | |||
總計 |
(1)求列聯(lián)表中的數(shù)據(jù)的值;
(2)能否有把握認為,新冠肺炎的感染程度和性別有關(guān)?
(3)該學(xué)生實驗小組打算從“輕—中度感染”的患者中按男女比例再抽取5人,追蹤某種中藥制劑的效果.然后從這5人中隨機抽取3人進行每日的健康記錄,求至少抽到2名女性患者的概率.
附表及公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有兩個不相等的實數(shù)根, 則實數(shù)的取值范圍是
A. B. , C. , D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a∈R.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當 時,設(shè)、為曲線上任意兩點,曲線在點處的切線斜率為k,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的方程為,曲線:(為參數(shù),),在以原點為極點,軸正半軸為極軸的極坐標系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線有公共點,且直線與曲線的交點恰好在曲線與軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com