【題目】已知函數(shù)

1)若曲線在點處的切線與直線垂直,求實數(shù)的值;

2)若恒成立,求實數(shù)的取值范圍;

3)證明:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義域為,設(shè).

1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);

2)求證:;

3)求證:對于任意的,總存在,滿足,并確定這樣的的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出停課不停學(xué)的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學(xué)生進行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:

分數(shù)不少于120

分數(shù)不足120

合計

線上學(xué)習(xí)時間不少于5小時

4

19

線上學(xué)習(xí)時間不足5小時

合計

45

1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)

2)在上述樣本中從分數(shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時間不少于5小時和線上學(xué)習(xí)時間不足5小時的學(xué)生共5名,若在這5名學(xué)生中隨機抽取2人,求至少1人每周線上學(xué)習(xí)時間不足5小時的概率.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:

①在區(qū)間內(nèi)單調(diào)遞增;

②在區(qū)間內(nèi)單調(diào)遞減;

③在區(qū)間內(nèi)單調(diào)遞增;

是極小值點;

是極大值點.

其中正確的是( )

A. ③⑤B. ②③C. ①④⑤D. ①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】33日,武漢大學(xué)人民醫(yī)院的團隊在預(yù)印本平臺上發(fā)布了一項研究:在新冠肺炎病例的統(tǒng)計數(shù)據(jù)中,男性患者往往比女性患者多.研究者分析了11~29日的6013份病例數(shù)據(jù),發(fā)現(xiàn)的患者為男性;進入重癥監(jiān)護病房的患者中,則有為男性.隨后,他們分析了武漢大學(xué)人民醫(yī)院的數(shù)據(jù).他們按照癥狀程度的不同進行分析,結(jié)果發(fā)現(xiàn),男性患者有為危重,而女性患者危重情況的為.也就是說男性的發(fā)病情況似乎普遍更嚴重.研究者總結(jié)道:男性在新冠肺炎的傳播中扮演著重要的角色.”那么,病毒真的偏愛男性嗎?有一個中學(xué)生學(xué)習(xí)小組,在自己封閉的社區(qū)進行無接觸抽樣問卷調(diào)查,收集到男、女患者各50個數(shù)據(jù),統(tǒng)計如下:

中度感染

重度(包括危重)

總計

男性患者

女性患者

總計

1)求列聯(lián)表中的數(shù)據(jù)的值;

2)能否有把握認為,新冠肺炎的感染程度和性別有關(guān)?

3)該學(xué)生實驗小組打算從中度感染的患者中按男女比例再抽取5人,追蹤某種中藥制劑的效果.然后從這5人中隨機抽取3人進行每日的健康記錄,求至少抽到2名女性患者的概率.

附表及公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有兩個不相等的實數(shù)根, 則實數(shù)的取值范圍是

A. B. , C. , D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中a∈R.

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當 時,設(shè)為曲線上任意兩點,曲線在點處的切線斜率為k,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱,平面平面,,分別是的中點.

(1)證明:

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的方程為,曲線為參數(shù),),在以原點為極點,軸正半軸為極軸的極坐標系中,曲線.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線有公共點,且直線與曲線的交點恰好在曲線軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案