考點(diǎn):數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)由2S
n=a
n+1-1,當(dāng)n≥2時,2S
n-1=a
n-1,兩式相減得
=3,再求得
=3,由此可判斷a
n}是等比數(shù)列,可求a
n;
(2)利用累加法可求b
n,再由分組求和可得T
n.
(3)表示出c
n,拆項(xiàng)后利用裂項(xiàng)相消法可求得R
n.注意消項(xiàng)規(guī)律;
解答:
解:(1)∵2S
n=a
n+1-1,當(dāng)n≥2時,2S
n-1=a
n-1,
∴2(S
n-S
n-1)=a
n+1-a
n,
∴
=3,
∵2a
1=a
2-1,∴a
2=3,
=3,
∴{a
n}是以1為首項(xiàng),3為公比的等比數(shù)列,
∴
an=3n-1.
(2)
bn+1=bn+,∴
bn-bn-1=,
累加得
bn=(1-),
∴T
n=b
1+b
2+…+b
n=
n-(1-).
(3)
cn==(-),
Rn=[(
-)
+(-)+(
-)
+…+(-)]
=
[
-].
點(diǎn)評:該題考查由遞推式求數(shù)列通項(xiàng)、數(shù)列求和、等比數(shù)列的性質(zhì),裂項(xiàng)相消法對數(shù)列求和是高考考查的重點(diǎn)內(nèi)容,要熟練掌握.