在無窮等比數(shù)列{an}中,首項(xiàng)a1,公比q>0,且
lim
n→∞
(
a1
1+q
+qn)=
1
2
,則a1的取值范圍是
 
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)極限存在可確定q的范圍以及a1與q的關(guān)系,從而可求出a1的范圍.
解答: 解:∵公比q>0,且
lim
n→∞
(
a1
1+q
+qn)=
1
2
,
∴0<q<1,且
a1
1+q
=
1
2
,
a1=
1
2
(1+q)
,
∵1<1+q<2
1
2
a1<1

故答案為:(
1
2
,1
).
點(diǎn)評:本題考查極限的意義,不等式的應(yīng)用,等比數(shù)列的概念,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:x4-2x2+1>x2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)A、B坐標(biāo)分別為(0,-
2
),(0,
2
),直線AM,BM相交于點(diǎn)M,且它們的斜率之積為-
2
3

(1)求點(diǎn)M軌跡C的方程;
(2)若過點(diǎn)D(2,0)的直線l與(1)中的軌跡C交于不同的兩點(diǎn)E,F(xiàn)(E在D、F之間),試求△ODE與△ODF面積之比的取值范圍(0為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(x-5)2(x-4)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,
3
),B(-1,3
3
),則直線AB的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),且P(ξ<0)=0.3,則P(0≤ξ≤1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x0<a,都滿足x02-2x0-3>0,則a的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c是角A、B、C的對邊,已知b2=ac,且a2-c2=ac-bc,則∠A=
 
,△ABC為
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,3]上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(0,
1
e
B、(
ln3
3
,e)
C、(0,
ln3
3
]
D、[
ln3
3
1
e

查看答案和解析>>

同步練習(xí)冊答案