(本小題滿分1 2分)
如圖,四邊形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABCD平面EFDC,設(shè)AD中點(diǎn)為P.
( I )當(dāng)E為BC中點(diǎn)時(shí),求證:CP//平面ABEF
(Ⅱ)設(shè)BE=x,問(wèn)當(dāng)x為何值時(shí),三棱錐A-CDF的體積有最大值?并求出這個(gè)最大值。
(1)根據(jù)線面平行的判定定理來(lái)證明。
(2)當(dāng)時(shí),有最大值,最大值為3.
解析試題分析:解:(Ⅰ)取的中點(diǎn),連、,
則,又∥,
所以,即四邊形為平行四邊形,
所以∥,又平面,,
故∥平面.
(Ⅱ)因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/40/d/r1f0o.png" style="vertical-align:middle;" />平面,平面平面,
又
所以平面
由已知,所以
故
所以,當(dāng)時(shí),有最大值,最大值為3.
考點(diǎn):本試題考查了線面平行的判定定理,以及幾何體體積的運(yùn)用,。
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用已知的線線平行證明線面平行,同時(shí)設(shè)出變量,結(jié)合體積的公式得到關(guān)于x的函數(shù)關(guān)系式,進(jìn)而利用函數(shù)的性質(zhì)來(lái)求解最值,注意熟練的結(jié)合二次函數(shù)的對(duì)稱軸和定義域來(lái)求解最值,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4.
(Ⅰ)設(shè)M是PC上一點(diǎn),證明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中點(diǎn),求棱錐P-DMB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在直線A1B1上,且滿足
(1)證明:PN⊥AM
(2)若,求直線AA1與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在四棱柱中,面,底面是直角梯形,,,,異面直線與所成角為.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某高速公路收費(fèi)站入口處的安全標(biāo)識(shí)墩如圖4所示,墩的上半部分是側(cè)面全等的四棱錐P-EFGH,下半部分是長(zhǎng)方體ABCD-EFGH.圖5、圖6分別是該標(biāo)識(shí)墩的正(主)視圖和俯視圖.
(Ⅰ)求該安全標(biāo)識(shí)墩的體積;
(Ⅱ)證明:直線BD平面PEG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖示,AB是圓柱的母線,BD是圓柱底面圓的直徑,C是底面圓周上一點(diǎn),E是AC中點(diǎn),且.
(1)求證:;
(2)求直線BD與面ACD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四棱錐的側(cè)面是等邊三角形,平面,平面,,是棱的中點(diǎn).
(1)求證:平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,直角梯形ABCD中,∠B=90°,AD//BC,AD=1,BC=2,
∠C=60°,將該梯形繞著AB所在的直線為軸旋轉(zhuǎn)一周,求該旋轉(zhuǎn)體的表面積和體積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com