解答:
解:(1)函數(shù)的定義域?yàn)椋?∞,2),f′(x)=a+
,
把x=1代入f(x)得:f(1)=a,則切點(diǎn)坐標(biāo)為(1,a),
把x=1代入導(dǎo)函數(shù)中得:f′(1)=a-1,則切線的斜率k=f′(1)=a-1,
∵y=f(x)在點(diǎn)(1,f(1))處的切線l平行于x軸
∴切線斜率k=f′(1)=a-1=0,解得a=1.
(2)由2-x>0,解得x<2,得到f(x)的定義域?yàn)椋?∞,2),
當(dāng)a>0時(shí),f′(x)=a+
,
由f′(x)>0得a+
>0,解得x
<2-,此時(shí)函數(shù)單調(diào)遞增,
∴函數(shù)的單調(diào)增區(qū)間為(-∞,2-
).
由f′(x)=a+
<0,
解得2-
<x<2,此時(shí)函數(shù)單調(diào)遞減,
∴函數(shù)的單調(diào)減區(qū)間為(2-
,2).
(3)①當(dāng)2-
≤0,即0<a≤
時(shí),f(x)在[0,1]上單調(diào)遞減,∴f
min(x)=f(1)=a.
②當(dāng)0<2-
≤1,即
<a≤1時(shí),f(x)在[0,2-
)上單調(diào)遞增,在(2-
,1]上單調(diào)遞減,
∵f(0)=ln2,f(1)=a,
e<3<2<e,
∴
<ln<ln2<lne=1,
即當(dāng)
<a<ln2時(shí),f
min(x)=f(1)=a.
當(dāng)ln2≤a<1時(shí),f
min(x)=f(0)=ln2.
③當(dāng)2-
≥1,即a≥1時(shí),f(x)在[0,1]上單調(diào)遞增,
∴f
min(x)=f(0)=ln2.
綜上:當(dāng)0<a<ln2時(shí),f
min(x)=a.
當(dāng)a≥ln2時(shí),f
min(x)=ln2.