【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),曲線的直角坐標(biāo)方程為,將曲線上的點(diǎn)向下平移1個(gè)單位,然后橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,得到曲線.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線相交于兩點(diǎn),求三角形的面積.
【答案】(1):,:;(2)
【解析】
(1)將曲線的參數(shù)方程參數(shù)消掉,得出其直角坐標(biāo)方程,由平移變換和伸縮變換得出曲線的直角坐標(biāo)方程;
(2)將曲線的參數(shù)方程化成標(biāo)準(zhǔn)參數(shù)方程,并代入曲線方程,由參數(shù)的幾何意義以及點(diǎn)到直線的距離公式,即可得出三角形的面積.
(1)由可知,曲線的直角坐標(biāo)方程為,即
將曲線上的點(diǎn)向下平移1個(gè)單位,可得
由伸縮變換,得,則,即
即曲線的直角坐標(biāo)方程為.
(2)將曲線的參數(shù)方程化成標(biāo)準(zhǔn)參數(shù)方程為(為參數(shù)),
帶入曲線,有,設(shè)對(duì)應(yīng)的參數(shù)分別為,則,,
所以
因?yàn)辄c(diǎn)到曲線的距離為
所以三角形的而積等于.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率,以橢圓的長(zhǎng)軸和短軸為對(duì)角線的四邊形的周長(zhǎng)為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過點(diǎn)的直線交橢圓于兩點(diǎn),是否存在直線 ,使得到直線的距離滿足恒成立,若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三期中考試后,數(shù)學(xué)教師對(duì)本次全部學(xué)生的數(shù)學(xué)成績(jī)按1∶20進(jìn)行分層抽樣,隨機(jī)抽取了20名學(xué)生的成績(jī)?yōu)闃颖,成?jī)用莖葉圖記錄如圖所示,但部分?jǐn)?shù)據(jù)不小心丟失,同時(shí)得到如下表所示的頻率分布表:
分?jǐn)?shù)段(分) | 總計(jì) | |||||
頻數(shù) | ||||||
頻率 | 0.25 |
(1)求表中,的值及成績(jī)?cè)?/span>范圍內(nèi)的樣本數(shù);
(2)從成績(jī)內(nèi)的樣本中隨機(jī)抽取4個(gè)樣本,設(shè)其中成績(jī)?cè)?/span>內(nèi)的樣本個(gè)數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望;
(3)若把樣本各分?jǐn)?shù)段的頻率看作總體相應(yīng)各分?jǐn)?shù)段的概率,現(xiàn)從全校高三期中考試數(shù)學(xué)成績(jī)中隨機(jī)抽取5個(gè),求其中恰有2個(gè)成績(jī)?cè)?/span>內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=若函數(shù)f (x)的圖象與直線y=x有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的取值集合為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形中,,,,,,為上一點(diǎn),且,過作交于,現(xiàn)將沿折到,使,如圖2.
(1)求證:平面
(2)在線段上是否存在一點(diǎn),使與平面所成的角為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點(diǎn),圓心在線段上.
(1)當(dāng)為何值時(shí),點(diǎn)恰好在路面中線上?
(2)記圓心在路面上的射影為,且在線段上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),,且,則下列結(jié)論中錯(cuò)誤的是____________.
①;
②平面;
③三棱錐的體積為定值;
④異面直線,所成的角為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)工廠在某年里連續(xù)10個(gè)月每月產(chǎn)品的總成本(萬(wàn)元)與該月產(chǎn)量(萬(wàn)件)之間有如下一組數(shù)據(jù):
1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 | |
2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過建立的關(guān)于的回歸方程,估計(jì)某月產(chǎn)量為1.98萬(wàn)件時(shí),產(chǎn)品的總成本為多少萬(wàn)元?(均精確到0.001)
附注:①參考數(shù)據(jù):,,,,.
②參考公式:相關(guān)系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的運(yùn)動(dòng)方式,小王的微信朋友內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
性別 步數(shù) | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評(píng)定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有X人,超過10000步的有Y人,設(shè)ξ=|X﹣Y|,求E的分布列及數(shù)學(xué)期望.
附:K2,n=a+b+c+d.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com