【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

【答案】D

【解析】

試題分析:對(duì)于A,消耗升汽油,乙車行駛的距離比千米小得多,故錯(cuò);對(duì)于B, 以相同速度行駛相同路程,三輛車中甲車消耗汽油最少,故錯(cuò);對(duì)于C, 甲車以千米/小時(shí)的速度行駛小時(shí),消耗升汽油, 故錯(cuò);對(duì)于D,車速低于千米/小時(shí),丙的燃油效率高于乙的燃油效率,用丙車比用乙車量多省油,故對(duì).故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F為拋物線的焦點(diǎn),A、B是拋物線C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn).

(I)若直線AB經(jīng)過焦點(diǎn)F,且斜率為2,求線段AB的長度|AB|;

(II)當(dāng)OAOB時(shí),求證:直線AB經(jīng)過定點(diǎn)M(4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖所示,在空間直角坐標(biāo)系的坐標(biāo)平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉區(qū)域,將區(qū)域沿軸的正方向上移4個(gè)單位,得到幾何體如圖一.現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為( )

A. B. C. 2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足.

(I)求證:是等比數(shù)列;

(II)求證:不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a3=5,a5﹣2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為 , 且經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+2|﹣|x﹣1|
(I)畫出函數(shù)y=f(x)的圖象;
(II)若關(guān)于x的不等式f(x)+4≥|1﹣2m|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解放軍某部在實(shí)兵演練對(duì)抗比賽中,紅、藍(lán)兩個(gè)小組均派6人參加實(shí)彈射擊,其所得成績的莖葉圖如圖所示.
(1)根據(jù)射擊數(shù)據(jù),計(jì)算紅、藍(lán)兩個(gè)小組射擊成績的均值與方差,并說明紅軍還是藍(lán)軍的成績相對(duì)比較穩(wěn)定;
(2)若從藍(lán)軍6名士兵中隨機(jī)抽取兩人,求所抽取的兩人的成績之差不超過2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線處的導(dǎo)數(shù)等于,求實(shí)數(shù);

(Ⅱ),求的極值

(Ⅲ)當(dāng)時(shí),上的最大值為,求在該區(qū)間上的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案