12.已知正方體ABCD-A1B1C1D1,E,F(xiàn),G分別為AA1,A1B1,A1D1的中點(diǎn).求證:平面EFG∥平面BDC1

分析 由已知得EG∥BC1,GF∥BD,由此能證明平面EFG∥平面BDC1

解答 證明:∵正方體ABCD-A1B1C1D1,E,F(xiàn),G分別為AA1,A1B1,A1D1的中點(diǎn),
∴EG∥AD1,又AD1∥BC1,∴EG∥BC1
GF∥B1D1,又B1D1∥BD,∴GF∥BD,
∵EG∩GF=G,BC1∩BD=B,
∴平面EFG∥平面BDC1

點(diǎn)評(píng) 本題考查面面平行的證明,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=log2(ax2-3x+2)
(1)若f(1)<2,求a的取值范圍;
(2)若a=1,求滿足$(\frac{1}{2})^{t}$<f(3)的t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)在(-∞,+∞)上為單調(diào)函數(shù)的是( 。
A.y=x2-xB.y=|x|C.y=x3+2xD.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=f(x)圖象上每個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)到原來2倍,然后再將整個(gè)圖象沿x軸左平移$\frac{π}{2}$個(gè)單位,沿y軸向下平移1個(gè)單位,得到函數(shù)y=$\frac{1}{2}$sinx,則y=f(x)的表達(dá)式為( 。
A.y=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+1B.y=$\frac{1}{2}$sin(2x-$\frac{π}{2}$)+1C.y=$\frac{1}{2}$sin(2x-$\frac{π}{4}$)+1D.y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,F(xiàn)為B1C1的中點(diǎn),D,E分別是棱BC,CC1上的點(diǎn),且AD⊥BC.
(1)求證;直線A1F∥平面ADE;
(2)E為C1C中點(diǎn),能否在直線B1B上找一點(diǎn)N,使得A1N∥平面ADE?若存在,確定該點(diǎn)位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列函數(shù)的定義域:
(1)y=$\sqrt{1-lgx}$;
(2)y=log2(x-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知lgx=3,則x=1000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知log52=a,log53=b,用a、b表示log524;
(2)已知lg2=m,lg3=n,用m、n表示lg$\sqrt{4.5}$;
(3)已知lg25=x,用x表不lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.曲線y=4-$\root{3}{x-1}$的拐點(diǎn)是1.

查看答案和解析>>

同步練習(xí)冊(cè)答案