【題目】如圖所示的幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的,點是弧上的一點,點是弧的中點.
(1)求證:平面平面;
(2)當(dāng)且時,求二面角的正弦值.
【答案】(1)見解析(2)
【解析】【試題分析】(1)由于為弧的中點,根據(jù)垂徑定理可有,在圓柱內(nèi)有,由此證得平面,進而得到平面平面.(2)以點為坐標(biāo)原點,分別以為軸, 軸建立如圖所示的平面直角坐標(biāo)系,通過計算平面和平面的法向量,利用向量夾角公式求得二面角的余弦值,進而求得其正弦值.
【試題解析】
(1)證明: 在圓B中,點P為的中點, .
又 平面, ,而,
平面,又
平面平面
(2)解:以點B為坐標(biāo)原點,分別以BC,BA為軸, 軸建立如圖所示的平面直角坐標(biāo)系.
則.設(shè)平面的法向量
由
設(shè)平面的法向量,
由
.(10分)設(shè)二面角的平面角大小為,
則,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的敘述錯誤的是( )
A. 對于命題p: ,則 .
B. 命題“若”的逆否命題為“若”.
C. 若為假命題,則均為假命題.
D. “”是“”的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某初級中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如下表:
初一年級 | 初二年級 | 初三年級 | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校學(xué)生中隨機抽取1名,抽到初二年級女生的概率是0.19.
求x的值;
現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)在初三年級抽取多少名?
已知y245,z245,求初三年級中女生比男生多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù),定義域為的函數(shù)是偶函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)求實數(shù)值;
(Ⅱ)判斷該函數(shù)在上的單調(diào)性并用定義證明;
(Ⅲ)是否存在實數(shù),使得對任意的,不等式恒成立.若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù)且.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時, , ,若存在,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了確定下一年度投入某種產(chǎn)品的宣傳費用,需了解年宣傳費x(單位:萬元)對年銷量y(單位:噸)和年利潤(單位:萬元)的影響.對近6宣傳費xi和年銷售量yi(i=1,2,3,4,5,6)的數(shù)據(jù)做了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費x(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量y(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費x(萬元)與年銷售量y(噸)之間近似滿足關(guān)系式y=axb(a,b>0),即lny=blnx+lna.,對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)從表中所給出的6年年銷售量數(shù)據(jù)中任選2年做年銷售量的調(diào)研,求所選數(shù)據(jù)中至多有一年年銷售量低于20噸的概率.
(Ⅱ)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(Ⅲ) 若生產(chǎn)該產(chǎn)品的固定成本為200(萬元),且每生產(chǎn)1(噸)產(chǎn)品的生產(chǎn)成本為20(萬元)(總成本=固定成本+生產(chǎn)成本+年宣傳費),銷售收入為(萬元),假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),則2019年該公司應(yīng)該投入多少宣傳費才能使利潤最大?(其中)
附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,且過點,其右焦點為.點是橢圓上異于長軸端點的任意一點,連接并延長交橢圓于點,線段的中點為,為坐標(biāo)原點,且直線與右準(zhǔn)線交于點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求證在上是單調(diào)遞減函數(shù);
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)討論函數(shù)的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com