17.$\frac{1}{2}+({\frac{1}{2}+\frac{1}{4}})+({\frac{1}{2}+\frac{1}{4}+\frac{1}{8}})+…+({\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{{2^{10}}}}})$的值為( 。
A.7+$\frac{1}{2^9}$B.9+$\frac{1}{{{2^{10}}}}$C.11+$\frac{1}{{{2^{11}}}}$D.7+$\frac{1}{{{2^{10}}}}$

分析 利用等比數(shù)列求和公式求出通項的和,然后求解即可.

解答 解:$\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=$1-\frac{1}{{2}^{n}}$.
∴$\frac{1}{2}+(\frac{1}{2}+\frac{1}{4})+(\frac{1}{2}+\frac{1}{4}+\frac{1}{8})+…+(\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{2}^{10}})$
=$\frac{1}{2}+$$1-\frac{1}{{2}^{2}}$+$1-\frac{1}{{2}^{3}}$+$1-\frac{1}{{2}^{4}}$+…+$1-\frac{1}{{2}^{10}}$
=10-$(\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{2}^{10}})$
=10-1+$\frac{1}{{2}^{10}}$
=9+$\frac{1}{{2}^{10}}$.
故選:B.

點評 本題考查等比數(shù)列求和公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若復(fù)數(shù)z=$\frac{a+3i}{1-2i}$(a∈R),且z是純虛數(shù),則|a+2i|等于2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={-2,-1,0,1,2,3,4},B={-3,-2,-1,1,5},則集合A∩B的子集的個數(shù)為( 。
A.6B.7C.8D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3+bx2+(b+3)x,在x=1處取極值;
(1)求b及f(x)在區(qū)間[-1,1]上的最小值;
(2)若函數(shù)g(x)=f(x)-mx在區(qū)間[-2,2]上為減函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夾角為60°,$|\overrightarrow{OA}|=|\overrightarrow{OB}|=2$,若$\overrightarrow{OC}=2\overrightarrow{OA}+\overrightarrow{OB}$,則$|\overrightarrow{OC}|$=(  )
A.$\sqrt{6}$B.$2\sqrt{2}$C.$2\sqrt{5}$D.$2\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若向量$\overrightarrow{a}$=(x,3)(x∈R),則“x=4”是“|$\overrightarrow{a}$|=5”的充分不必要條件條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽淮北十二中高三上月考二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

化簡

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.
(Ⅰ)寫出2×2列聯(lián)表;判斷是否有90%的把握認為猜對歌曲名稱是否與年齡有關(guān),說明你的理由;(下面的臨界值表供參考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅱ)現(xiàn)計劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運選手,求3名幸運選手中至少有一人在20~30歲之間的概率.
(參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知sinθcosθ<0,那么角θ是( 。
A.第一或第二象限角B.第二或第三象限角
C.第二或第四象限角D.第一或第四象限角

查看答案和解析>>

同步練習(xí)冊答案