已知集合A={4,5,7,9},B={3,4,7,8,9},若U=A∪B,則∁U(A∩B)=
 
考點:交、并、補集的混合運算
專題:集合
分析:求出U,A∩B,然后求解∁U(A∩B)即可.
解答: 解:集合A={4,5,7,9},B={3,4,7,8,9},
U=A∪B={3,4,5,7,8,9}.
A∩B={4,7,9}.
∴∁U(A∩B)={3,5,8}.
故答案為:{3,5,8}
點評:本題考查集合交、并、補的運算,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)以a=(
3
4
)x,b=(
4
3
)x-1,c=log
3
4
x,若x>l,則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、c<a<b
C、b<a<c
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=(
1
3
|x|
(1)求函數(shù)定義域;
(2)判斷函數(shù)的奇偶性;
(3)畫出函數(shù)圖象,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x+1≥0},N={x|x2<4},則M∩N=( 。
A、(-∞,-1)
B、(2,+∞)
C、(-1,2)
D、[-1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓錐的母線長為5,底面半徑為3,則其體積為( 。
A、15πB、30π
C、12πD、36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlg(x+
1+x2
)且f(2-a)<f(-1),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一塊鍍鋅鐵皮的邊角料ABCD,其中AB、CD、DA都是線段,曲線段BC是拋物線的一部分,且點B是該拋物線的頂點,BA所在直線是該拋物線的對稱軸,經(jīng)測量,AB=2米,AD=3米,AB⊥AD,點C到AD、AB的距離CH、CR的長均為1米,現(xiàn)要用這塊邊角料截一個矩形AEFG(其中點F在曲線段BC或線段CD上,點E在線段AD上,點G在線段AB上).設(shè)BG的長為x米,矩形AEFG的面積為S平方米.
(1)將S表示為x的函數(shù);
(2)當x為多少米時,S取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(ωx-
π
3
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R(ω>0),且函數(shù)y=f(x)的圖象與直線y=-1的兩個相鄰交點間的距離為
π
2

(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)g(x)=f(x)+1的圖象向左平移m(m>0)個單位后,所得圖象關(guān)于原點中心對稱,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若橢圓的對稱軸為坐標軸,長軸長與短軸長的和為18,焦距為6,則橢圓的方程為 (  )
A、
x2
9
+
y2
16
=1
B、
x2
25
+
y2
16
x2
16
+
y2
25
=1
C、
x2
25
+
y2
16
=1
D、
x2
16
+
y2
25
=1或
x2
9
+
y2
16
=1

查看答案和解析>>

同步練習冊答案