【題目】已知函數(shù)f(x)= +
(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)= [f2(x)﹣2]+f(x)(a為實數(shù)),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(shù)(a),若﹣m2+2tm+ ≤g(a)對a<0所有的實數(shù)a及t∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.

【答案】
(1)解:由1+x≥0且1﹣x≥0,得﹣1≤x≤1,

所以函數(shù)的定義域為[﹣1,1],

又[f(x)]2=2+2 ∈[2,4],由f(x)≥0,得f(x)∈[ ,2],

所以函數(shù)值域為[ ,2]


(2)解:因為F(x)= =a + + ,

令t=f(x)= + ,則 = ﹣1,

∴F(x)=m(t)=a( ﹣1)+t= ,t∈[ ,2],

由題意知g(a)即為函數(shù)m(t)= ,t∈[ ,2]的最大值.

注意到直線t=﹣ 是拋物線m(t)= 的對稱軸.

因為a<0時,函數(shù)y=m(t),t∈[ ,2]的圖象是開口向下的拋物線的一段,

①若t=﹣ ∈(0, ],即a≤﹣ ,則g(a)=m( )=

②若t=﹣ ∈( ,2],即﹣ <a≤﹣ ,則g(a)=m(﹣ )=﹣a﹣ ;

③若t=﹣ ∈(2,+∞),即﹣ <a<0,則g(a)=m(2)=a+2,

綜上有g(shù)(a)=


(3)解:易得 ,

由﹣ ≤g(a)對a<0恒成立,即要使﹣ ≤gmin(a)= 恒成立,

m2﹣2tm≥0,令h(t)=﹣2mt+m2,對所有的t∈[﹣1,1],h(t)≥0成立,

只需

解得m的取值范圍是m≤﹣2或m=0,或m≥2


【解析】(1)由1+x≥0且1﹣x≥0可求得定義域,先求[f(x)]2的值域,再求f(x)的值域;(2)F(x)=a + + ,令t=f(x)= + ,則 = ﹣1,由此可轉(zhuǎn)化為關(guān)于t的二次函數(shù),按照對稱軸t=﹣ 與t的范圍[ ,2]的位置關(guān)系分三種情況討論,借助單調(diào)性即可求得其最大值;(3)先由(2)求出函數(shù)g(x)的最小值,﹣ ≤g(a)對a<0恒成立,即要使﹣ ≤gmin(a)恒成立,從而轉(zhuǎn)化為關(guān)于t的一次不等式,再根據(jù)一次函數(shù)的單調(diào)性可得不等式組,解出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρcos(θ﹣ )=1,A,B分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標方程,并求A,B的極坐標;
(2)設(shè)M為曲線C上的一個動點, (λ>0),| || |=2,求動點Q的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,焦點, 為坐標原點,直線(不垂直軸)過點且與拋物線交于兩點,直線的斜率之積為.

(1)求拋物線的方程;

(2)若為線段的中點,射線交拋物線于點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人進行羽毛球練習(xí)賽,其中兩人比賽另一個人當裁判,設(shè)每周比賽結(jié)束時,負的一方在下一局當裁判,假設(shè)每局比賽中甲勝乙的概率為,甲勝丙,乙勝丙的概率都是,各局的比賽相互獨立,第一局甲當裁判.

(1)求第三局甲當裁判的概率;

(2)記前四次中乙當裁判的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)用反證法證明:已知實數(shù)a,b,c滿足a+b+c=1,求證:a、b、c中至少有一個數(shù)不大于
(2)用分析法證明: + >2 +

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= (其中常數(shù)a>0,且a≠1).
(1)當a=10時,解關(guān)于x的方程f(x)=m(其中常數(shù)m>2 );
(2)若函數(shù)f(x)在(﹣∞,2]上的最小值是一個與a無關(guān)的常數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當為自然對數(shù)的底數(shù))時,求的最小值;

2)討論函數(shù)零點的個數(shù);

3)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+
(1)求證:f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)在(0, )和( ,+∞)上的單調(diào)性并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中, , ,外接球的球心為,點是側(cè)棱上的一個動點.有下列判斷:

① 直線與直線是異面直線;② 一定不垂直;

③ 三棱錐的體積為定值; ④的最小值為.

其中正確的個數(shù)是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案