【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a、b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(﹣∞,﹣1)上的最大值.
【答案】
(1)解:f(x)=ax2+1(a>0),則f'(x)=2ax,k1=2a,g(x)=x3+bx,則g′(x)=3x2+b,k2=3+b,
由(1,c)為公共切點(diǎn),可得:2a=3+b ①
又f(1)=a+1,g(1)=1+b,
∴a+1=1+b,即a=b,代入①式可得:
(2)解:由題設(shè)a2=4b,設(shè)
則 ,令h'(x)=0,解得: , ;
∵a>0,∴ ,
x | (﹣∞,﹣ ) | ﹣ | - | ) | |
h′(x) | + | ﹣ | + | ||
h(x) | 極大值 | 極小值 |
∴原函數(shù)在(﹣∞,﹣ )單調(diào)遞增,在 單調(diào)遞減,在 )上單調(diào)遞增
①若 ,即0<a≤2時(shí),最大值為 ;
②若 <﹣ ,即2<a<6時(shí),最大值為
③若﹣1≥﹣ 時(shí),即a≥6時(shí),最大值為h(﹣ )=1
綜上所述:當(dāng)a∈(0,2]時(shí),最大值為 ;當(dāng)a∈(2,+∞)時(shí),最大值為
【解析】(1)根據(jù)曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,可知切點(diǎn)處的函數(shù)值相等,切點(diǎn)處的斜率相等,故可求a、b的值;(2)根據(jù)a2=4b,構(gòu)建函數(shù) ,求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù),可確定函數(shù)的單調(diào)區(qū)間,進(jìn)而分類討論,確定函數(shù)在區(qū)間(﹣∞,﹣1)上的最大值.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在軸上的圓與直線切于點(diǎn).圓: .
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知,圓與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)).過點(diǎn)任作一條傾斜角不為0的直線與圓相交于兩點(diǎn).問:是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)在[a,b]上有定義,若對任意x1 , x2∈[a,b],有 則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,3]上具有性質(zhì)P,現(xiàn)給出如下命題:
①f(x)在[1,3]上的圖象是連續(xù)不斷的;
②f(x2)在[1, ]上具有性質(zhì)P;
③若f(x)在x=2處取得最大值1,則f(x)=1,x∈[1,3];
④對任意x1 , x2 , x3 , x4∈[1,3],有 [f(x1)+f(x2)+f(x3)+f(x4)]
其中真命題的序號是( )
A.①②
B.①③
C.②④
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},則A∩B=( )
A.(﹣∞,﹣1)
B.(﹣1, )
C.﹙ ,3﹚
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若同時(shí)滿足條件:
①x∈R,f(x)<0或g(x)<0;
②x∈(﹣∞,﹣4),f(x)g(x)<0.
則m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 當(dāng)a=﹣1時(shí),求證:f(x)≤0;
(Ⅱ) 對任意x2≥ex1>0,存在x∈(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上10,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( )
A.12.8 3.6 B.2.8 13.6 C.12.8 13.6 D.13.6 12.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線
(1)求證:不論取何實(shí)數(shù),直線與圓總有兩個(gè)不同的交點(diǎn);
(2)設(shè)直線與圓交于點(diǎn),當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),如果函數(shù)f(x)的圖象恰好通過n()個(gè)整點(diǎn),則稱函數(shù)f(x)為n階整點(diǎn)函數(shù)。有下列函數(shù):
① ② ③ ④
其中是一階整點(diǎn)的是( )
A. ①②③④ B. ①③④ C. ④ D. ①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com