10.如圖,在正方體A1B1C1D1-ABCD中,
(1)在正方體的12條棱中,與棱AA1是異面直線的有幾條(只要寫出結果)
(2)證明:AC∥平面A1BC1;
(3)證明:AC⊥平面BDD1B1

分析 (1)畫出正方體ABCD-A1B1C1D1,根據(jù)異面直線的概念即可找出與棱AA1異面的棱.
(2)連接AC,A1C1,則A1C1∥AC,利用線面平行的判定定理即可證明;
(3)由DD1⊥面AC,知BD⊥AC,由DD1⊥BD,能夠證明AC⊥平面BDD1B1

解答 解:(1)與棱AA1異面的棱為:CD,C1D1,BC,B1C1,共4條.
(2)證明:連接AC,A1C1,則A1C1∥AC,
∵AC?平面A1BC1,A1C1?平面A1BC1,
∴AC∥平面A1BC1;
(3)證明:∵DD1⊥面AC,AC?平面AC,∴DD1⊥AC,
∵AC⊥BD,DD1∩BD=D,BD?平面BDD1B1,DD1?平面BDD1B1
∴AC⊥平面BDD1B1

點評 考查異面直線的概念,直線與平面垂直的證明,直線與平面平行的判定,解題時要認真審題,仔細解答,注意合理地進行等價轉化,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.在等差數(shù)列{an}中,a1=-2015,其前n項和為Sn,若$\frac{{S}_{12}}{12}$-$\frac{{S}_{10}}{10}$=2,則S2015的值等于:-2015.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知⊙O是邊長為2的正方形ABCD的內切圓,P是⊙O上任意一點,則AP+$\sqrt{2}$BP的最小值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設a>0,b>1,若a+b=2,則$\frac{2}{a}+\frac{1}{b-1}$的最小值為( 。
A.$3+2\sqrt{2}$B.6C.$4\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),
(1)若函數(shù)f(x)在區(qū)間(-1,0)上有最大值2,最小值-4,求函數(shù)f(x)在區(qū)間(0,1)上的最值;(直接寫出結果,不需要證明)
(2)若函數(shù)f(x)在區(qū)間(0,1)上單調遞增,試判斷函數(shù)f(x)在區(qū)間(-1,0)上的單調性并加以證明;
(3)若當x∈(0,1)時,f(x)=x2-2x,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知P(t,3t),t∈R,M是圓O1:(x+2)2+y2=$\frac{1}{4}$上的動點,N是O2:(x-4)2+y2=$\frac{1}{4}$上的動點,則|PN|-|PM|的最大值是( 。
A.$\frac{3\sqrt{5}}{5}$+1B.$\frac{3\sqrt{5}}{5}-1$C.$\frac{6\sqrt{5}}{5}$+1D.$\frac{6\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=Asin(ωx+φ),(x∈R,A>0,φ>0)的圖象與x軸的交點中,相鄰兩個交點之間的距離為$\frac{π}{2}$,且圖象上一點為M($\frac{2}{3}π$,-2).
(1)求f(x)的函數(shù)解析式;
(2)若x∈[0,$\frac{π}{4}$],求f(x)的最值及相應的值;
(3)將函數(shù)f(x)的圖象向左平移$\frac{π}{2}$個單位,再將圖象上各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變,求經(jīng)以上變換后得到的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如果一個點是一個指數(shù)函數(shù)的圖象與一個對數(shù)函數(shù)的圖象的公共點,那么稱這個點為“好點”,在下面的六個點M(1,1)、N(1,2)、P(1,3)、Q(2,1)、R(2,2)、T(2,3)中,“好點”的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中,在區(qū)間(0,+∞)上為減函數(shù)的是( 。
A.y=x+1B.y=$\sqrt{x+1}$C.y=($\frac{1}{2}$)xD.y=-$\frac{1}{x}$

查看答案和解析>>

同步練習冊答案