【題目】已知函數(shù)
當(dāng)時(shí),討論的導(dǎo)函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);
當(dāng)時(shí),函數(shù)的圖象恒在圖象上方,求正整數(shù)的最大值.
【答案】(1)當(dāng)時(shí),在存在唯一零點(diǎn);當(dāng)時(shí),在沒有零點(diǎn)(2)
【解析】
(1)首先求,令,然后求,討論當(dāng)時(shí),,判斷函數(shù)的單調(diào)性和端點(diǎn)值,判斷函數(shù)是否有零點(diǎn);當(dāng)時(shí),同樣是判斷函數(shù)的單調(diào)性,然后結(jié)合零點(diǎn)存在性定理,可判斷函數(shù)是否存在零點(diǎn);(2)由,參變分離求解出在上恒成立,轉(zhuǎn)化為求函數(shù)的最小值,設(shè),,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求得函數(shù)的最小值.
解:(1).
令,,則,
①當(dāng)時(shí),當(dāng),,單調(diào)遞減,又,所以對(duì)時(shí),,此時(shí)在不存在零點(diǎn).
②當(dāng)時(shí),當(dāng),,單調(diào)遞減.
又因?yàn)?/span>,取,
則,即.
根據(jù)零點(diǎn)存在定理,此時(shí)在存在唯一零點(diǎn).
綜上,當(dāng)時(shí),在存在唯一零點(diǎn);當(dāng)時(shí),在沒有零點(diǎn).
(2)由已知得在上恒成立.
設(shè),,則
因?yàn)?/span>時(shí),所以,
設(shè),,所以在上單調(diào)遞增,
又,,由零點(diǎn)存在定理,使得,即,,
且當(dāng)時(shí),,,單調(diào)遞減;當(dāng)時(shí),,,單調(diào)遞增.
所以,
又在上單調(diào)遞減,而,所以,
因此,正整數(shù)的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國(guó)獨(dú)創(chuàng)并且有效的計(jì)算工具,為我國(guó)古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌計(jì)數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
表示多位數(shù)時(shí),個(gè)位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個(gè)數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
①“且為真”是“或為真”的充分不必要條件:②“且為假”是“或為真”的充分不必要條件;③“或為真”是“非為假”的必要不充分條件;④“非為真”是“且為假”的必要不充分條件.
其中,正確的結(jié)論是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ) =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡(jiǎn)稱“六藝”,某高中學(xué)校為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐,規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為且;選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場(chǎng)比賽中獲得第一名,下列說法正確的是( )
A. 乙有四場(chǎng)比賽獲得第三名
B. 每場(chǎng)比賽第一名得分為
C. 甲可能有一場(chǎng)比賽獲得第二名
D. 丙可能有一場(chǎng)比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的所有棱長(zhǎng)均為2, , 分別為和的中點(diǎn).
(1)證明: 平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃印⒁页、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得?0個(gè)組合,稱六十甲子,周而復(fù)始,無(wú)窮無(wú)盡。2019年是“干支紀(jì)年法”中的己亥年,那么2026年是“干支紀(jì)年法”中的
A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com