【題目】已知函數(shù)且在上單調(diào)遞減.
(1)求參數(shù)的取值范圍;
(2)請(qǐng)畫(huà)出的示意圖,若關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)解,請(qǐng)根據(jù)圖象說(shuō)明的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)函數(shù)在上單調(diào)遞減,列出不等組,求解,即可得出結(jié)果;
(2)根據(jù)題意判斷出函數(shù)的單調(diào)性,作出函數(shù)的圖像,根據(jù)方程恰有兩個(gè)不相等的實(shí)數(shù)解,得到函數(shù)與有兩交點(diǎn),結(jié)合函數(shù)圖像,即可求出結(jié)果.
(1)因?yàn)楹瘮?shù)且在上單調(diào)遞減,
所以有,即,解得;
故參數(shù)的取值范圍是;
(2)由(1)可得,當(dāng)時(shí),單調(diào)遞減,且,所以在上單調(diào)遞減,且;
當(dāng)時(shí),單調(diào)遞減,且;
由得,,
所以在上單調(diào)遞減,在上單調(diào)遞增;
作出函數(shù)的大致圖像如下:
因?yàn)殛P(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)解,
所以函數(shù)與有兩不同交點(diǎn),
由圖像可得,只需,即,
又由(1)知,
所以即為所求的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)若,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若,正實(shí)數(shù), 滿足,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),與是的子集,若,則稱為一個(gè)“理想配集”,那么符合此條件的“理想配集”的個(gè)數(shù)是________.(規(guī)定與是兩個(gè)不同的“理想配集”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015男籃亞錦賽決賽階段,中國(guó)男籃以9連勝的不敗戰(zhàn)績(jī)贏得第28屆亞錦賽冠軍,同時(shí)拿到亞洲唯一1張直通里約奧運(yùn)會(huì)的入場(chǎng)券.賽后,中國(guó)男籃主力易建聯(lián)榮膺本屆亞錦賽MVP(最有價(jià)值球員),如表是易建聯(lián)在這9場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).
比分 | 易建聯(lián)技術(shù)統(tǒng)計(jì) | |||
投籃命中 | 罰球命中 | 全場(chǎng)得分 | 真實(shí)得分率 | |
中國(guó)91﹣42新加坡 | 3/7 | 6/7 | 12 | 59.52% |
中國(guó)76﹣73韓國(guó) | 7/13 | 6/8 | 20 | 60.53% |
中國(guó)84﹣67約旦 | 12/20 | 2/5 | 26 | 58.56% |
中國(guó)75﹣62哈薩克期坦 | 5/7 | 5/5 | 15 | 81.52% |
中國(guó)90﹣72黎巴嫩 | 7/11 | 5/5 | 19 | 71.97% |
中國(guó)85﹣69卡塔爾 | 4/10 | 4/4 | 13 | 55.27% |
中國(guó)104﹣58印度 | 8/12 | 5/5 | 21 | 73.94% |
中國(guó)70﹣57伊朗 | 5/10 | 2/4 | 13 | 55.27% |
中國(guó)78﹣67菲律賓 | 4/14 | 3/6 | 11 | 33.05% |
注:①表中a/b表示出手b次命中a次;
②TS%(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:
TS%= .
(Ⅰ)從上述9場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中TS%超過(guò)50%的概率;
(Ⅱ)從上述9場(chǎng)比賽中隨機(jī)選擇兩場(chǎng),求易建聯(lián)在這兩場(chǎng)比賽中TS%至少有一場(chǎng)超過(guò)60%的概率;
(Ⅲ)用x來(lái)表示易建聯(lián)某場(chǎng)的得分,用y來(lái)表示中國(guó)隊(duì)該場(chǎng)的總分,畫(huà)出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷y與x之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在是增函數(shù),其圖像如圖所示.
(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;
(2)對(duì)于(1)中的函數(shù)和函數(shù),若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域;
(2)當(dāng)時(shí),試討論函數(shù)的單調(diào)性;
(3)若對(duì)任意,存在,使得不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們學(xué)習(xí)了二元基本不等式:設(shè),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立利用基本不等式可以證明不等式,也可以利用“和定積最大,積定和最小”求最值.
(1)對(duì)于三元基本不等式請(qǐng)猜想:設(shè) 當(dāng)且僅當(dāng)時(shí),等號(hào)成立(把橫線補(bǔ)全).
(2)利用(1)猜想的三元基本不等式證明:
設(shè)求證:
(3)利用(1)猜想的三元基本不等式求最值:
設(shè)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下有四個(gè)說(shuō)法:
①若、為互斥事件,則;
②在中,,則;
③和的最大公約數(shù)是;
④周長(zhǎng)為的扇形,其面積的最大值為;
其中說(shuō)法正確的個(gè)數(shù)是( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com