若正數(shù)a,b,c滿足a+b+c=1.
(1)求證:
1
3
≤a2+b2+c2<1;
(2)求
1
2a+1
+
1
2b+1
+
1
2c+1
的最小值.
考點(diǎn):不等式的證明
專題:選作題,不等式
分析:(1)利用條件,兩邊平方,利用基本不等式,即可證得結(jié)論;
(2)由柯西不等式可得
1
2a+1
+
1
2b+1
+
1
2c+1
=
1
5
1
2a+1
+
1
2b+1
+
1
2c+1
)(2a+1+2b+1+2c+1)≥(1+1+1)2=9,即可求
1
2a+1
+
1
2b+1
+
1
2c+1
的最小值
解答: (1)證明:∵a+b+c=1,
∴1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≤3(a2+b2+c2),
∴a2+b2+c2
1
3

∵a-a2=a(1-a),0<a<1,∴a>a2,
同理b>b2,c>c2,
∴a2+b2+c2<a+b+c=1,
1
3
≤a2+b2+c2<1;
(2)解:由柯西不等式可得
1
2a+1
+
1
2b+1
+
1
2c+1
=
1
5
1
2a+1
+
1
2b+1
+
1
2c+1
)(2a+1+2b+1+2c+1)≥(1+1+1)2=9(當(dāng)且僅當(dāng)a=b=c時(shí)取等號(hào)),
1
2a+1
+
1
2b+1
+
1
2c+1
的最小值為
9
5
,當(dāng)且僅當(dāng)a=b=c=
1
3
時(shí)取到.
點(diǎn)評(píng):本題考查不等式的證明,考查基本不等式的運(yùn)用,考查柯西不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn),若在雙曲線上存在點(diǎn)P,滿足∠F1PF2=60°,|OP|=
7
a,則該雙曲線的離心率為(  )
A、
3
B、
2
C、
6
2
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲3個(gè)骰子,當(dāng)至少一個(gè)5點(diǎn)或一個(gè)6點(diǎn)出現(xiàn)時(shí),就說這次試驗(yàn)成功,則在54次試驗(yàn)中成功次數(shù)n的期望為( 。
A、19B、27C、54D、38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知acosA+bcosB=ccosC,a=2bcosC,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在一個(gè)等比數(shù)列{an}同時(shí)滿足下列三個(gè)條件:①a1+a6=11且a3a4=
32
9
;②an+1>an(n∈N*);③至少存在一個(gè)m(m∈N*且m>4),使得
2
3
am-1,am2,am+1+
4
9
依次構(gòu)成等差數(shù)列?若存在,求出通項(xiàng)公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面α于B,DC?α,且CD⊥AC于C,求證:平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
(n≥2,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知x>-1,n∈N*,求證:(1+x)n≥1+nx
(2)已知m>0,n∈N*,ex≥m+nx對(duì)于x∈R恒成立,求m與n滿足的條件,并求當(dāng)n=1時(shí)m的值.
(3)已知x≤n,n∈N*.求證:n-n(1-
x
n
n•ex≤x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=axekx-1,g(x)=lnx+kx.
(Ⅰ)當(dāng)a=1時(shí),若f(x)在(1,+∞)上為減函數(shù),g(x)在(0,1)上是增函數(shù),求k值;
(Ⅱ)對(duì)于任意k>0,x>0,f(x)>g(x)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案