【題目】已知點(diǎn)A(1,2),B(﹣3,﹣1),若圓x2+y2=r2(r>0)上恰有兩點(diǎn)M,N,使得△MAB和△NAB的面積均為5,則r的取值范圍是 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cosB= ,tanC= . (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的減函數(shù),其導(dǎo)函數(shù)f′(x)滿足 +x<1,則下列結(jié)論正確的是( )
A.對于任意x∈R,f(x)<0
B.對于任意x∈R,f(x)>0
C.當(dāng)且僅當(dāng)x∈(﹣∞,1),f(x)<0
D.當(dāng)且僅當(dāng)x∈(1,+∞),f(x)>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ,其中a為大于零的常數(shù)..
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
(3)求證:對于任意的n∈N* , 且n>1時(shí),都有l(wèi)nn> + +…+ 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2 , |F1F2|=4,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是( )
A.3
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD的三個頂點(diǎn)的坐標(biāo)為A(﹣1,5),B(﹣2,﹣1),C(2,3).
(1)求平行四邊形ABCD的頂點(diǎn)D的坐標(biāo);
(2)在△ACD中,求CD邊上的高所在直線方程;
(3)求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O為△ABC的外心,角A,B,C的對邊分別滿足a,b,c, (Ⅰ)若3 +4 +5 = ,求cos∠BOC的值;
(Ⅱ)若 = ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不經(jīng)過坐標(biāo)原點(diǎn)的直線與圓交于不同的兩點(diǎn).若直線的斜率與直線和斜率滿足,求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com