設(shè)M是橢圓
x2
25
+
y2
16
=1上的一點(diǎn),F(xiàn)1、F2為焦點(diǎn),∠F1MF2=
π
3
,則S MF1F2為( 。
A、
16
3
3
B、16
3
C、
25
3
3
D、25
3
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓的定義和余弦定理建立關(guān)于m、n的方程組,平方相減即可求出|PF1|•|PF2|,結(jié)合三角形的面積公式,可得△MF1F2的面積
解答: 解:∵橢圓方程為
x2
25
+
y2
16
=1,
∴a2=25,b2=16,可得c2=a2-b2=9,即a=5,c=3,
設(shè)|PF1|=m,|PF2|=n,則有m+n=10,
∵∠F1MF2=
π
3

∴36=m2+n2-2mncos
π
3

∵(m+n)2=m2+n2+2mn,
∴mn=
64
3
,
∴|PF1|•|PF2|=
64
3

∴△PF1F2的面積S=
1
2
|PF1|•|PF2|sin
π
3
=
1
2
64
3
3
2
=
16
3
3

故選:A.
點(diǎn)評:本題給出橢圓的焦點(diǎn)三角形,求它的面積,著重考查了余弦定理、橢圓的定義和簡單幾何性質(zhì)等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線經(jīng)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點(diǎn),點(diǎn)M為這兩條曲線的一個(gè)交點(diǎn),且|MF|=2p,則雙曲線的漸近線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
9x-1
3x
的圖象( 。
A、關(guān)于原點(diǎn)對稱
B、關(guān)于直線y=x對稱
C、關(guān)于x軸對稱
D、關(guān)于y軸對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)行程序框圖所對應(yīng)的程序,輸出結(jié)果s的值為( 。
A、
1
2
B、
3
2
C、-
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列三句話按三段論的模式排列順序正確的是(  )
①2012能被2整除; 
②一切偶數(shù)都能被2整除; 
③2012是偶數(shù).
A、①②③B、②①③
C、②③①D、③②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的方程為3x-y+3=0,則l在y軸上的截距為( 。
A、-3B、3C、-5D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面幾種推理中是演繹推理的序號為(  )
A、半徑為r圓的面積S=πr2,則單位圓的面積S=π
B、由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電
C、由平面三角形的性質(zhì),推測空間四面體性質(zhì)
D、由平面直角坐標(biāo)系中圓的方程為(x-a)2+(y-b)2=r2,推測空間直角坐標(biāo)系中球的方程為(x-a)2+(y-b)2+(z-c)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓經(jīng)過原點(diǎn),且焦點(diǎn)分別為F1(0,1),F(xiàn)2(0,3)則該橢圓的短軸長為( 。
A、
3
B、2
3
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C上的動(dòng)點(diǎn)P是坐標(biāo)為(
3
cosθ,
2
sinθ).
(1)求曲線C的普通方程,并指出曲線的類型及焦點(diǎn)坐標(biāo);
(2)過點(diǎn)Q(2,1)作曲線C的兩條切線l1、l2,證明l1⊥l2

查看答案和解析>>

同步練習(xí)冊答案