7.已知m∥α,n∥β,α∥β.若m,n不相交,則m,n所成角的取值范圍是[0,$\frac{π}{2}$].

分析 利用線面、面面位置關(guān)系,即可得出結(jié)論.

解答 解:∵m∥α,n∥β,α∥β,m,n不相交,
∴m,n所成角的取值范圍是[0,$\frac{π}{2}$].
故答案為:[0,$\frac{π}{2}$].

點(diǎn)評 本題考查空間線面、面面位置關(guān)系,考查線線角,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.己知集合M={x|-2<x<3},N={x|lgx≥0},則M∩N=( 。
A.(-2,+∞)B.[1,3)C.(-2,-1]D.(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.長為1,寬為a($\frac{1}{2}$<a<1)的矩形紙片,剪下一個邊長等于矩形寬度的正方形(稱為第1次操作),剩下矩形長為原矩形的寬,如圖,再剪下一個邊長等于此時矩形寬度的正方形(稱為第2次操作),剩下矩形長為第二個矩形的寬,如此反復(fù)操作下去,若在第n次操作后,剩下的矩形為正方形,則操作終止.
(1)當(dāng)a=$\frac{3}{5}$時,求正整數(shù)n的最大值;
(2)記第一個矩形的長為a1=1,第二個矩形的長為a2=a,以此類推,第n個矩形的長為an,數(shù)列{an}的前n項(xiàng)和為Sn.若存在一個正數(shù)a($\frac{1}{2}$<a<1),使對于任意的正整數(shù)n(n≥3),都有an+1<an,求證2<Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,已知AB=6,BC=4,AC=2$\sqrt{19}$,則tanB=$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知x,y∈R+,x≠y,求證:$\frac{1}{x}$$+\frac{1}{y}$$>\frac{2}{x+y}$;
(2)如何改進(jìn)上述結(jié)論,使之成為-個更好的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)在(0,+∞)上有意義,且單調(diào)遞增,若f(2)=1,f(xy)=f(x)+f(y)
(1)求f(1)f(4)的值;
(2)若f(x)+f(x+3)≤2.求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如果對任意x、y∈R都有f(x+y)=f(x)•f(y),且f(1)=2.
(1)求f(2)、f(3)、f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2012)}{f(2011)}$+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2014)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知e為自然對數(shù)的底數(shù),函數(shù)f(x)=ex-e-x+ln($\sqrt{{x}^{2}+1}$+x)+1,f′(x)為其導(dǎo)函數(shù),則f(e)+f′(e)+f(-e)-f′(-e)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2.比較下列各組數(shù)的大。
(1)1.2${\;}^{\frac{1}{2}}$和1.2${\;}^{\frac{1}{5}}$
(2)3${\;}^{-\frac{2}{3}}$和3${\;}^{-\frac{1}{3}}$
(3)0.70.5和0.70.3
(4)0.2-1.5和0.2-1.9   
(5)10.40.85和1;
(6)3-0.7和0.11-0.2

查看答案和解析>>

同步練習(xí)冊答案