精英家教網 > 高中數學 > 題目詳情
已知P是橢圓
x2
45
+
y2
20
=1
的第三象限內一點,且它與兩焦點連線互相垂直,若點P到直線4x-3y-2m+1=0的距離不大于3,則實數m的取值范圍是( 。
A.[-7,8]B.[-
9
2
,
21
2
]
C.[-2,2]D.(-∞,-7]∪[8,+∞)
∵橢圓
x2
45
+
y2
20
=1
的兩焦點坐標為(-5,0)(5,0),
且P(x,y)(x<0,y<0)與兩焦點連線互相垂直,
y
x+5
y
x-5
=-1
,即y2=25-x2,
把y2=25-x2代入
x2
45
+
y2
20
=1,
x2
45
+
25-x2
20
=1
,
解得x=±3,
∴y2=25-9=16,
y=±4,
∵點P在第三象限,
∴P點坐標是(-3,-4),
P(-3,-4)到4x-3y-2m+1=0的距離d=
|1-2m|
5
,
∵點P到直線4x-3y-2m+1=0的距離不大于3,
|1-2m|
5
≤3,
-15≤1-2m≤15,
解得-7≤m≤8.
故選A.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),離心率為
2
2

(1)求橢圓的標準方程;
(2)設過點F且不與坐標軸垂直的直線l交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,求點G的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,拋物線C1:x2=2py(p>0)的焦點為F,橢圓C2
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
3
2
,C1與C2在第一象限的交點為P(
3
,
1
2

(1)求拋物線C1及橢圓C2的方程;
(2)已知直線l:y=kx+t(k≠0,t>0)與橢圓C2交于不同兩點A、B,點M滿足
AM
+
BM
=
0
,直線FM的斜率為k1,試證明k•k1
-1
4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知兩條拋物線y1=x2+2mx+4,y2=x2+mx-m中至少有一條與x軸有公共點,則實數m的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓的短軸端點與雙曲線
y2
2
-x2
=1的焦點重合,過P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(Ⅰ)求橢C的方程;
(Ⅱ)求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線y=x-2與拋物線y2=4x交于A、B兩點,則|AB|的值為( 。
A.2
6
B.4
6
C.2
3
D.4
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線W的頂點在原點,其焦點F在x軸的正半軸上,過點F作x軸的垂線與W交于A、B兩點,且點A在第一象限,|AB|=8,過點B作直線BC與x軸交于點T(t,0)(t>2),與拋物線交于點C.
(1)求拋物線W的標準方程;
(2)若t=6,曲線G:x2+y2-2ax-4y+a2=0與直線BC有公共點,求實數a的取值范圍;
(3)若|OB|2+|OC|2≤|BC|2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在橢圓
x2
16
+
y2
4
=1內,通過點M(1,1),且被這點平分的弦所在的直線方程為( 。
A.x+4y-5=0B.x-4y-5=0C.4x+y-5=0D.4x-y-5=0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系中,O為坐標原點,如果一個橢圓經過點P(3,
2
),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.

查看答案和解析>>

同步練習冊答案