【題目】設(shè)數(shù)列的前項和,對任意,都有(為常數(shù)).
(1)當(dāng)時,求;
(2)當(dāng)時,
(ⅰ)求證:數(shù)列是等差數(shù)列;
(ⅱ)若數(shù)列為遞增數(shù)列且,設(shè),試問是否存在正整數(shù)(其中),使成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組;若不存在,說明理由.
【答案】(1)(2)(ⅰ)證明見解析(ⅱ)存在唯一正整數(shù)數(shù)對,使成等比數(shù)列
【解析】
(1)當(dāng)時,利用公式計算得到,再計算得到.
(2)(ⅰ)化簡得到,得到,化簡得到
得到答案.
(2)(ⅱ)計算,假設(shè)存在正整數(shù)數(shù)組,則當(dāng),且時,,故數(shù)列為遞減數(shù)列,為方程的一組解,得到答案.
(1)時,①
時,②
由②-①得即
時,,∴
(常數(shù),),∴以1為首項,4為公比的等比數(shù)列
∴
(2)(ⅰ)當(dāng),,時,.③
當(dāng)時,.④
③-④得:,⑤
所以.⑥
⑤-⑥得:.
因為,所以,即,
所以是等差數(shù)列.
(ⅱ)因為為遞增等差數(shù)列.,又
得或者(舍),所以
假設(shè)存在正整數(shù)數(shù)組,使成等比數(shù)列,則成等差數(shù)列,
于是,
所以,(☆)
易知為方程(☆)的一組解.
當(dāng),且時,,故數(shù)列為遞減數(shù)列,
于是,所以此時方程(☆)無正整數(shù)解.
綜上,存在唯一正整數(shù)數(shù)對,使成等比數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表.
表1:某年部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15/p> | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)從表1的日期中隨機(jī)選出一天,試估計這一天的升旗時刻早于7:00的概率;
(2)甲,乙二人各自從表2的日期中隨機(jī)選擇一天觀看升旗,且兩人的選擇相互獨立.記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的分布列和數(shù)學(xué)期望.
(3)將表1和表2中的升旗時刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如7:31化為).記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,判斷與的大。ㄖ恍鑼懗鼋Y(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節(jié)目,選手面對1號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金,在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段: ; (單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.
(Ⅰ)寫出列聯(lián)表;判斷是否有的把握認(rèn)為猜對歌曲名稱是否與年齡有關(guān);說明你的理由;(如表的臨界值表供參考)
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)現(xiàn)計劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中恰好有一人在歲之間的概率.
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,長軸長是短軸長的2倍.
(1)求橢圓的方程;
(2)設(shè)直線經(jīng)過點且與橢圓相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明:為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,定義為兩點,的“切比雪夫距離”,又設(shè)點及上任意一點,稱的最小值為點到直線的“切比雪夫距離”,記作,給出下列三個命題:
①對任意三點、、,都有;
②已知點和直線:,則;
③到定點的距離和到的“切比雪夫距離”相等的點的軌跡是正方形.
其中正確的命題有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,過且斜率為的直線與交于,兩點,.
(1)求的方程;
(2)求過點,且與的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,,,平面平面,為棱上一點(不與、重合),平面交棱于點.
(1)求證:;
(2)若二面角的余弦值為,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,過橢圓右焦點的最短弦長是,且點在橢圓上.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足:,其中,是橢圓上的點,直線與直線的斜率之積為,求點的軌跡方程并判斷是否存在兩個定點、,使得為定值?若存在,求出定值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com