【題目】設(shè)數(shù)列的前項和,對任意,都有為常數(shù)).

1)當(dāng)時,求;

2)當(dāng)時,

)求證:數(shù)列是等差數(shù)列;

)若數(shù)列為遞增數(shù)列且,設(shè),試問是否存在正整數(shù)(其中),使成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組;若不存在,說明理由.

【答案】(1)(2)(ⅰ)證明見解析(ⅱ)存在唯一正整數(shù)數(shù)對,使成等比數(shù)列

【解析】

1)當(dāng)時,利用公式計算得到,再計算得到.

2)()化簡得到,得到,化簡得到

得到答案.

2)()計算,假設(shè)存在正整數(shù)數(shù)組,則當(dāng),且時,,故數(shù)列為遞減數(shù)列,為方程的一組解,得到答案.

1時,

時,

時,

(常數(shù),),1為首項,4為公比的等比數(shù)列

2)()當(dāng),時,.③

當(dāng)時,.④

得:,

所以.⑥

得:.

因為,所以,即,

所以是等差數(shù)列.

)因為為遞增等差數(shù)列.,又

或者(舍),所以

假設(shè)存在正整數(shù)數(shù)組,使成等比數(shù)列,則成等差數(shù)列,

于是,

所以,

易知為方程()的一組解.

當(dāng),且時,,故數(shù)列為遞減數(shù)列,

于是,所以此時方程()無正整數(shù)解.

綜上,存在唯一正整數(shù)數(shù)對,使成等比數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表.

表1:某年部分日期的天安門廣場升旗時刻表

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

1月1日

7:36

4月9日

5:46

7月9日

4:53

10月8日

6:17

1月21日

7:31

4月28日

5:19

7月27日

5:07

10月26日

6:36

2月10日

7:14

5月16日

4:59

8月14日

5:24

11月13日

6:56

3月2日

6:47

6月3日

4:47

9月2日

5:42

12月1日

7:16

3月22日

6:15

6月22日

4:46

9月20日

5:59

12月20日

7:31

表2:某年2月部分日期的天安門廣場升旗時刻表

日期

升旗時刻

日期

升旗時刻

日期

升旗時刻

2月1日

7:23

2月11日

7:13

2月21日

6:59

2月3日

7:22

2月13日

7:11

2月23日

6:57

2月5日

7:20

2月15日

7:08

2月25日

6:55

2月7日

7:17

2月17日

7:05

2月27日

6:52

2月9日

7:15/p>

2月19日

7:02

2月28日

6:49

(1)從表1的日期中隨機(jī)選出一天,試估計這一天的升旗時刻早于7:00的概率;

(2)甲,乙二人各自從表2的日期中隨機(jī)選擇一天觀看升旗,且兩人的選擇相互獨立.記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的分布列和數(shù)學(xué)期望

(3)將表1和表2中的升旗時刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如7:31化為).記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,判斷的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%

C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“開門大吉”是某電視臺推出的游戲節(jié)目,選手面對1號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金,在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段: ; (單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.

(Ⅰ)寫出列聯(lián)表;判斷是否有的把握認(rèn)為猜對歌曲名稱是否與年齡有關(guān);說明你的理由;(如表的臨界值表供參考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(Ⅱ)現(xiàn)計劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中恰好有一人在歲之間的概率. 

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,長軸長是短軸長的2倍.

(1)求橢圓的方程;

(2)設(shè)直線經(jīng)過點且與橢圓相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定義為兩點,切比雪夫距離,又設(shè)點上任意一點,稱的最小值為點到直線切比雪夫距離,記作,給出下列三個命題:

①對任意三點、、,都有;

②已知點和直線,則;

③到定點的距離和到切比雪夫距離相等的點的軌跡是正方形.

其中正確的命題有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,過且斜率為的直線交于,兩點,

(1)求的方程;

(2)求過點,且與的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,,,平面平面,為棱上一點(不與重合),平面交棱于點.

1)求證:;

2)若二面角的余弦值為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:,過橢圓右焦點的最短弦長是,且點在橢圓上.

1)求該橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)動點滿足:,其中,是橢圓上的點,直線與直線的斜率之積為,求點的軌跡方程并判斷是否存在兩個定點、,使得為定值?若存在,求出定值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案