【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點(diǎn)在平面上的射影在直線上,且.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)詳見解析(2)
【解析】
試題分析:(1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而當(dāng)線線平行比較難找時(shí),可以先證面面平行,再轉(zhuǎn)化為線面平行:本題有兩組相交直線互相平行,及,先得線面平行,平面及平面,再得面面平行,平面平面,最后得線面平行平面(2)利用空間直角坐標(biāo)系求二面角余弦值,先根據(jù)題意建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解得各面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角之間關(guān)系得結(jié)論
試題解析:(1)證明:∵,∴,又平面,
平面
∴平面
同理又,平面
且,∴平面平面
又平面,∴平面
(2)如圖,過作,過作平面,
分別以為軸建立空間直角坐標(biāo)系.
,,∴
∴,∴.
設(shè)平面的法向量為
∴,令,解得.
∴平面平面,∴平面的法向量為
設(shè)二面角的大小為,顯然為鈍角,
又平面的一個(gè)法向量為,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式.
(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱中心為,求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是坐標(biāo)原點(diǎn),若橢圓:的離心率為,右頂點(diǎn)為,上頂點(diǎn)為,的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),為橢圓上兩動(dòng)點(diǎn),若有,證明:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中且.
(Ⅰ)討論的單調(diào)區(qū)間;
(Ⅱ)若直線的圖象恒在函數(shù)圖像的上方,求的取值范圍;
(Ⅲ)若存在,,使得,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)令,是否存在實(shí)數(shù),當(dāng)(是自然常數(shù))時(shí),函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.
(3)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為,.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)滿足的一切的值,都有,求實(shí)數(shù)的取值范圍;
(3)若對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱中, , , , ,點(diǎn)是的中點(diǎn).
(1)求證: 平面;
(2)求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓?jiān)┊?dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計(jì)部門隨機(jī)抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.
(I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;
(II)對(duì)這100名網(wǎng)購者進(jìn)一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,
購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請(qǐng)?zhí)顚懴旅娴牧新?lián)表,并據(jù)
此判斷能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)為平面上的動(dòng)點(diǎn),且過點(diǎn)作的垂線,垂足為,滿足:
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)在軌跡上求一點(diǎn),使得到直線的距離最短,并求出最短距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com