已知圓C:x2+y2=4在矩陣A=
10
02
對應伸壓變換下變?yōu)橐粋橢圓,則此橢圓方程為
 
考點:變換、矩陣的相等
專題:選作題,矩陣和變換
分析:設P(x,y)為圓C上的任意一點,在矩陣A對應的變換下變?yōu)榱硪粋點P'(x',y'),代入圓方程,即可求出橢圓的方程.
解答: 解:設P(x,y)為圓C上的任意一點,在矩陣A對應的變換下變?yōu)榱硪粋點P'(x',y'),則
10
02
x
y
=
x′
y′
,可得
x=x′
2y=y′

代入x2+y2=4可得x′2+
1
4
y′2=4
x2
4
+
y2
16
=1

故答案為:
x2
4
+
y2
16
=1
點評:本題主要考查了特殊矩陣的變換,以及矩陣變換的應用,同時考查了計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某幼兒園小班的美術課上,老師帶領小朋友們用水彩筆為美術本上如右圖所示的兩個大小不同的氣球涂色,要求一個氣球只涂一種顏色,兩個氣球分別涂不同的顏色.該班的小朋友牛,F(xiàn)可用的有暖色系水彩筆紅色、橙色各一支,冷色系水彩筆綠色,藍色,紫色各一支.
(1)牛牛從他可用的五支水彩筆中隨機的取出兩支按老師要求為氣球涂色,問兩個氣球同為冷色的概率是多大?
(2)一般情況下,老師發(fā)出開始指令到涂色活動全部結束需要10分鐘.牛牛至少需要2分鐘完成該項任務.老師在發(fā)出開始指令1分鐘后隨時可能來到牛牛身邊查看涂色情況.問當老師來到牛牛身邊時牛牛已經(jīng)完成任務的概率是多大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(x-
2
x
6的展開式中第5項的二項式系數(shù)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a4=2,a7=-4.現(xiàn)從{an}的前10項中隨機取數(shù),每次取出一個數(shù),取后放回,連續(xù)抽取3次,假定每次取數(shù)互不影響,那么在這三次取數(shù)中,取出的數(shù)恰好為兩個正數(shù)和一個負數(shù)的概率為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(x+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且a0-a1+a2-a3+…+a8-a9=39,則實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有一批材料可以建成長為4Lm(L為常數(shù))的圍墻,如果用材料在一邊靠墻(墻的長度足夠長)的地方圍成一塊矩形場地,中間用同樣的材料隔成3個面積相等的矩形,則圍成矩形的面積的最大值為
 
m2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式2x≥1的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(1,3)在直線
x
a
+
y
b
=1(a>0,b>0),則a+2b的最小值為(  )
A、7+2
6
B、2
3
C、7+2
3
D、14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α+
π
3
)=-
5
13
,則cos(
π
6
-α)=( 。
A、
1
5
B、-
1
5
C、
5
13
D、-
5
13

查看答案和解析>>

同步練習冊答案