18.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.f(x)=$\frac{2}{x}$B.f(x)=log2xC.f(x)=($\frac{1}{2}$)xD.f(x)=-x2+2

分析 根據(jù)反比例函數(shù),對數(shù)函數(shù),指數(shù)函數(shù)以及二次函數(shù)的單調(diào)性便可判斷出每個選項的函數(shù)在(0,+∞)上的單調(diào)性,從而找出正確選項.

解答 解:A.反比例函數(shù)f(x)=$\frac{2}{x}$在(0,+∞)上為減函數(shù),∴該選項錯誤;
B.對數(shù)函數(shù)f(x)=log2x在(0,+∞)為增函數(shù),∴該選項正確;
C.指數(shù)函數(shù)$f(x)=(\frac{1}{2})^{x}$在(0,+∞)上為減函數(shù),∴該選項錯誤;
D.二次函數(shù)f(x)=-x2+2在(0,+∞)上為減函數(shù),∴該選項錯誤.
故選B.

點評 考查反比例函數(shù),對數(shù)函數(shù),指數(shù)函數(shù),以及二次函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下圖中的圖形經(jīng)過折疊不能圍成棱柱的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i是虛數(shù)單位,設(shè)復(fù)數(shù)z1=1+i,z2=1+2i,則$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合P={x∈Z||x-1|<2},Q={x∈Z|-1≤x≤2},則P∩Q=( 。
A.{0,1,2}B.{-1,0,1}C.{-1,0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知映射f:P→Q是從P到Q的一個函數(shù),則P,Q的元素( 。
A.可以是點B.可以是方程C.必須是實數(shù)D.可以是三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{1}{\sqrt{lo{g}_{2}x}}$的定義域為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)-4x+2(x∈[1,2]),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC是正三角形,若$\overrightarrow{a}$=$\overrightarrow{AC}$-$λ\overrightarrow{AB}$與向量$\overrightarrow{AC}$的夾角大于90°,則實數(shù)λ的取值范圍是( 。
A.(2,+∞)B.(-∞,-2)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+5(a>1),若f(x)在區(qū)間(-∞,2]上是減函數(shù),且對任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案