△ABC的坐標分別是A(1,0)、B(3,0)、C(3,4)則該三角形外接圓方程是
 
考點:圓的標準方程
專題:計算題,直線與圓
分析:由題意,設圓心坐標為O(2,b),利用OB=OC,建立方程,求得圓心與半徑,即可得到三角形外接圓方程.
解答: 解:由題意,設圓心坐標為O(2,b),則
∵OB=OC,
(2-3)2+b2
=
(2-3)2+(b-4)2
=r,
∴b=2,r=
5

∴三角形外接圓方程是(x-2)2+(y-2)2=5.
故答案為:(x-2)2+(y-2)2=5.
點評:本題給出三角形的三個頂點坐標,求三角形的外接圓的方程,考查待定系數(shù)法的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|a-1<x<2a+1},B={x|0<x<5},若A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

矩形ABCD的中心在坐標原點,邊AB與x軸平行,AB=8,BC=6.E,F(xiàn),G,H分別是矩形四條邊的中點,R,S,T是線段OF的四等分點,R′,S′,T′是線段CF的四等分點.設直線ER與GR′,ES與GS′,ET與GT′的交點依次為L,M,N.
(1)求以HF為長軸,以EG為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點L,M,N都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段OF的n(n∈N+,n≥2)等分點從左向右依次為Ri(i=1,2,…,n-1),線段CF的n等分點從上向下依次為Ti(i=1,2,…,n-1),那么直線ERi(i=1,2,…,n-1)與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過A(2,-3)、B(-4,6)兩點的直線斜率k的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)直角△ABC的兩條直角邊長分別為3,4,若將該三角形繞著斜邊旋轉(zhuǎn)一周所得的幾何體的體積是V,則V=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(0,-1),
c
=(k,-2)
,若(
a
-2
b
)⊥
c
,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示:AB是半徑為1的圓O的直徑,BC,CD是圓O的切線,B,D為切點,若∠ABD=30°,則AD•OC的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若六進制數(shù)13m502(6)化為十進制數(shù)等于12710,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
1-x
+lg(3x+1)的定義域是( 。
A、(-
1
3
,+∞)
B、(-∞,-
1
3
C、(-
1
3
1
3
D、(-
1
3
,1)

查看答案和解析>>

同步練習冊答案