已知數(shù)列{an}為等差數(shù)列,a6=a,則a1+a2+…+a11=11a;類比上述結(jié)論,對(duì)于等比數(shù)列{bn},若b5=b,則
 
考點(diǎn):類比推理
專題:計(jì)算題,推理和證明
分析:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時(shí),我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,即可得出結(jié)論.
解答: 解:由數(shù)列{an}是等差數(shù)列,數(shù)列{an}為等差數(shù)列,a6=a,則a1+a2+…+a11=11a;
類比推斷:對(duì)于等比數(shù)列{bn},若b5=b,則b1b2…b9=b9
故答案為:b1b2…b9=b9
點(diǎn)評(píng):類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c分別是角A,B,C的對(duì)邊,向量
m
=(1,
3
),
n
=(sin2C,cos(A+B)),且
m
n
=0.
(Ⅰ)若a=4,c=
13
,求△ABC的面積;
(Ⅱ)若A=
π
3
,cosB>cosC,求
AB
BC
-2
BC
CA
-3
CA
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)在第一象限內(nèi)的點(diǎn),F(xiàn)為其右焦點(diǎn),點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為B,若AF⊥BF,設(shè)∠ABF=α,且α∈[
π
12
π
6
],則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1+2ai)i=1-bi,其中a、b∈R,i是虛數(shù)單位,則|a+bi|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以點(diǎn)(0,0)為圓心,r為半徑的圓的曲線方程為x2+y2=r2.類比推出:以點(diǎn)(0,0,0)為球心,r為半徑的球面的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(3,-1)和點(diǎn)B(6,1),直線l:2x-3y-9=0的法向量為
n
,則
AB
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(
1
2
+sinx)的定義域?yàn)?div id="vhnjbtf" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)總體為60個(gè)個(gè)體的編號(hào)為0、1、2、…、59,現(xiàn)在要從中抽取一個(gè)容量為10的樣本,請(qǐng)根據(jù)編號(hào)按被6除余3的方法,取足樣本,則按順序抽取的第5個(gè)樣本的編號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m>1,當(dāng)實(shí)數(shù)x,y滿足不等式組
y≥x
y≤2x
x+y≤1
時(shí),目標(biāo)函數(shù)z=x+my的最大值等于2,則m的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案