【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2n﹣1.?dāng)?shù)列{bn}滿足b1=2,bn+1﹣2bn=8an
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{ }為等差數(shù)列,并求{bn}的通項(xiàng)公式.
(3)求{bn}的前n項(xiàng)和Tn

【答案】
(1)解:當(dāng)n=1時,a1=S1=2﹣1=1;

當(dāng)n≥2時,an=Sn﹣Sn1=2n﹣1﹣(2n1﹣1)=2n1

上式對n=1也成立.

則數(shù)列{an}的通項(xiàng)公式為an=2n1;


(2)證明:bn+1﹣2bn=8an=82n1=2n+2,

兩邊同除以2n+1,可得

=2,

可得數(shù)列{ }是首項(xiàng)為 =1,公差為2的等差數(shù)列;

即有 =1+2(n﹣1)=2n﹣1,

則{bn}的通項(xiàng)公式為bn=(2n﹣1)2n;


(3)解:{bn}的前n項(xiàng)和Tn=12+322+523+…+(2n﹣1)2n,

可得2Tn=122+323+524+…+(2n﹣1)2n+1,

兩式相減可得,﹣Tn=2+2(22+23+…+2n)﹣(2n﹣1)2n+1

=2+2 ﹣(2n﹣1)2n+1,

化簡可得Tn=6+(2n﹣3)2n+1


【解析】(1)運(yùn)用當(dāng)n=1時,a1=S1;當(dāng)n≥2時,an=Sn﹣Sn1 , 計算即可得到所求通項(xiàng)公式;(2)對bn+1﹣2bn=2n+2 , 兩邊同除以2n+1 , 由等差數(shù)列的定義和通項(xiàng)公式,即可得到所求;(3)運(yùn)用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理,即可得到所求和.
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式對題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x2﹣kx﹣4在區(qū)間[﹣2,4]上具有單調(diào)性,則k的取值范圍是(
A.[﹣8,16]
B.(﹣∞,﹣8]∪[16,+∞)
C.(﹣∞,﹣8)∪(16,+∞)
D.[16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會》是中央電視臺最近新推出的一檔有重大影響力的大型電視文化節(jié)目,今年兩會期間,教育部部長陳寶生答記者問時給予其高度評價;谶@樣的背景,山東某中學(xué)積極響應(yīng),也舉行了一次詩詞競賽。組委會在競賽后,從中抽取了100名選手的成績(百分制),作為樣本進(jìn)行統(tǒng)計,作出了圖中的頻率分布直方圖,分析后將得分不低于60分的學(xué)生稱為詩詞達(dá)人,低于60分的學(xué)生稱為詩詞待加強(qiáng)者

)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否在犯錯誤的概率不超過0.01的前提下認(rèn)為詩詞達(dá)人與性別有關(guān)?

詩詞待加強(qiáng)者

詩詞達(dá)人

合計

15

45

合計

)將頻率視為概率,現(xiàn)在從該校大量參與活動的學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中詩詞達(dá)人的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、數(shù)學(xué)期望和方差

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 =2csinA
(1)確定角C的大。
(2)若c= ,且△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切

1求圓的方程;

2設(shè)直線與圓相交于、兩點(diǎn),求實(shí)數(shù)的取值范圍;

32的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn)?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù).

(1)求的值;

(2)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租時間不超過兩小時免費(fèi),超過兩個小時的部分每小時收費(fèi)2元(不足1小時的部分按1小時計算).有甲、乙兩人獨(dú)立來該租車點(diǎn)騎游(各組一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為, ;兩小時以上且不超過三小時還車的概率分別為, ;兩人租車時間都不會超過四小時.

(1)求甲、乙兩人所付租車費(fèi)用相同的概率;

(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級從甲、乙兩個班級各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生成績的平均分是85,乙班學(xué)生成績的中位數(shù)是89.

(1)求的值;

(2)計算乙班7位學(xué)生成績的方差.

(3)從成績在90分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求乙班至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過定點(diǎn)的直線與雙曲線的左支有兩個交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為, ,求正數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案