【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過(guò)定點(diǎn)的直線(xiàn)與雙曲線(xiàn)的左支有兩個(gè)交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為 ,求正數(shù)的值.

【答案】(Ⅰ);(Ⅱ).

【解析】試題分析:(Ⅰ)由已知,可得,又∵,即可得解.

(Ⅱ)由可得 結(jié)合直線(xiàn)與雙曲線(xiàn)的左支有兩個(gè)交點(diǎn),∴必有. ∴.可得.

試題解析:(Ⅰ)由已知,不妨設(shè),

,即,

又∵, ∴,∴橢圓的標(biāo)準(zhǔn)方程為.

(Ⅱ)依題設(shè),如圖,直線(xiàn)的斜率存在,設(shè) ,

,

,

,

,

點(diǎn)到直線(xiàn)的距離為,

,

整理得,解得

又由直線(xiàn)與圓相交,有,解得,

依題設(shè),直線(xiàn)與雙曲線(xiàn)的左支有兩個(gè)交點(diǎn),∴必有. ∴.

此時(shí), ,

∴正數(shù).

點(diǎn)晴:本題主要考查直線(xiàn)與圓錐曲線(xiàn)位置關(guān)系. 直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系一方面要體現(xiàn)方程思想,另一方面要結(jié)合已知條件,從圖形角度求解.聯(lián)立直線(xiàn)與圓錐曲線(xiàn)的方程得到方程組,化為一元二次方程后由根與系數(shù)的關(guān)系求解是一個(gè)常用的方法. 涉及弦長(zhǎng)的問(wèn)題中,應(yīng)熟練地利用根與系數(shù)關(guān)系、設(shè)而不求法計(jì)算弦長(zhǎng);涉及垂直關(guān)系時(shí)也往往利用根與系數(shù)關(guān)系、設(shè)而不求法簡(jiǎn)化運(yùn)算;涉及過(guò)焦點(diǎn)的弦的問(wèn)題,可考慮用圓錐曲線(xiàn)的定義求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2n﹣1.?dāng)?shù)列{bn}滿(mǎn)足b1=2,bn+1﹣2bn=8an
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{ }為等差數(shù)列,并求{bn}的通項(xiàng)公式.
(3)求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (k>0).
(1)若f(x)>m的解集為{x|x<﹣3或x>﹣2},求不等式5mx2+ x+3>0的解集;
(2)若存在x>3使得f(x)>1成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計(jì)

甲班

乙班

30

總計(jì)

60

(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類(lèi)有關(guān).

(Ⅱ)現(xiàn)已知, 三人獲得優(yōu)秀的概率分別為, ,設(shè)隨機(jī)變量表示, , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附: ,

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三棱錐的三視圖如下圖所示,則該幾何體的體積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西某公司有一批專(zhuān)業(yè)技術(shù)人員,對(duì)他們進(jìn)行年齡狀況和接受教育程度(本科學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:

學(xué)歷

35歲以下

3550歲

50歲以上

本科

80

30

20

研究生

20

(Ⅰ)用分層抽樣的方法在歲年齡段的專(zhuān)業(yè)技術(shù)人員中抽取一個(gè)容量為10的樣本,將該樣本看成一個(gè)總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;

(Ⅱ)在這個(gè)公司的專(zhuān)業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個(gè)人,其中35歲以下48人,50歲以上10人,再?gòu)倪@個(gè)人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為,求、的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=an3n(x∈R).求數(shù)列{bn}前n項(xiàng)和的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn= ,數(shù)列{cn}的前n項(xiàng)和為T(mén)n
①求Tn;
②對(duì)于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,可以將函數(shù)y=cos2x的圖象(
A.向右平移
B.向右平移
C.向左平移
D.向左平移

查看答案和解析>>

同步練習(xí)冊(cè)答案