【題目】已知橢圓的焦距為2,過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的右焦點(diǎn)為,定點(diǎn),過(guò)點(diǎn)且斜率不為零的直線(xiàn)與橢圓交于,兩點(diǎn),以線(xiàn)段為直徑的圓與直線(xiàn)的另一個(gè)交點(diǎn)為,試探究在軸上是否存在一定點(diǎn),使直線(xiàn)恒過(guò)該定點(diǎn),若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)存在;定點(diǎn)為
【解析】
(1)首先根據(jù)題意列出方程組,再解方程組即可.
(2)首先設(shè),,的方程為:.聯(lián)立,利用韋達(dá)定理,結(jié)合求出直線(xiàn),再令即可得到直線(xiàn)恒過(guò)的定點(diǎn).
(1)由題知,解得,,
所以橢圓的方程為.
(2)設(shè),,因?yàn)橹本(xiàn)的斜率不為零,令的方程為:
由得
則,,
因?yàn)橐?/span>為直徑的圓與直線(xiàn)的另一個(gè)交點(diǎn)為,
所以,則.
則,故的方程為:.
令,則
而,,
所以,
所以.
故直線(xiàn)恒過(guò)定點(diǎn),且定點(diǎn)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某建材商場(chǎng)國(guó)慶期間搞促銷(xiāo)活動(dòng),規(guī)定:如果顧客選購(gòu)物品的總金額不超過(guò)600元,則不享受任何折扣優(yōu)惠;如果顧客選購(gòu)物品的總金額超過(guò)600元,則超過(guò)600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計(jì)計(jì)算.
某人在此商場(chǎng)購(gòu)物獲得的折扣優(yōu)惠金額為30元,則他實(shí)際所付金額為____元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的右頂點(diǎn)作互相垂直的兩條直線(xiàn)分別交橢圓于兩點(diǎn)(點(diǎn)不同于橢圓的右頂點(diǎn)),證明:直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)的距離比到直線(xiàn)的距離小,設(shè)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)過(guò)曲線(xiàn)上一點(diǎn)()作兩條直線(xiàn),與曲線(xiàn)分別交于不同的兩點(diǎn),,若直線(xiàn),的斜率分別為,,且.證明:直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率,橢圓的上、下頂點(diǎn)分別為,,左、右頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,.原點(diǎn)到直線(xiàn)的距離為.
(1)求橢圓的方程;
(2)是橢圓上異于,的任一點(diǎn),直線(xiàn),,分別交軸于點(diǎn),,若直線(xiàn)與過(guò)點(diǎn),的圓相切,切點(diǎn)為,證明:線(xiàn)段的長(zhǎng)為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為(且).
(I)求直線(xiàn)的極坐標(biāo)方程及曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)已知是直線(xiàn)上的一點(diǎn),是曲線(xiàn)上的一點(diǎn), ,,若的最大值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)證明: (為自然對(duì)數(shù)的底)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系相同的長(zhǎng)度單位.圓的方程為被圓截得的弦長(zhǎng)為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)設(shè)圓與直線(xiàn)交于點(diǎn),若點(diǎn)的坐標(biāo)為,且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com