函數(shù)f(x)=x3+x-3的零點(diǎn)落在的區(qū)間是(  )
A、[0,1]
B、[1,2]
C、[2,3]
D、[3,4]
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把區(qū)間端點(diǎn)函數(shù)值代入驗(yàn)證即可.
解答: 解:∵f(x)=x3+x-3單調(diào)遞增,
∴f(0)=-3<0
f(1)=1+1-3=-1<0
f(2)=8+2-3=7>0
∴f(x)=x3+x-3在區(qū)間(1,2)有一個(gè)零點(diǎn),
故選:B.
點(diǎn)評(píng):考查方程的根和函數(shù)零點(diǎn)之間的關(guān)系,即函數(shù)零點(diǎn)的判定定理,體現(xiàn)了轉(zhuǎn)化的思想方法,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A是三角形的一內(nèi)角,且sinA+cosA=
1
3
,則cos2A=( 。
A、
17
9
B、-
17
9
C、±
17
9
D、-
8
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式x2+x+c>0的解集是全體實(shí)數(shù)的條件是( 。
A、c<
1
4
B、c≤
1
4
C、c>
1
4
D、c≥
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小朋友用手指按如圖所示的規(guī)則練習(xí)數(shù)數(shù),數(shù)到2009時(shí)對(duì)應(yīng)的指頭是(  )
A、大拇指B、食指
C、中指D、無(wú)名指

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若3sinx-
3
cosx=2
3
sin(x-φ),φ∈(-π,π),則φ=(  )
A、-
π
6
B、
π
6
C、
6
D、-
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,圓ρ=4cosθ的垂直于極軸的兩條切線方程分別為( 。
A、θ=0(ρ∈R)和ρcosθ=4
B、θ=
π
2
(ρ∈R)和ρcosθ=4
C、θ=0(ρ∈R)和ρcosθ=2
D、θ=
π
2
(ρ∈R)和ρcosθ=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x-1)5的展開(kāi)式中,x3的系數(shù)為 ( 。
A、-10B、-5C、5D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:x(6-x)≥-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖兩個(gè)共底面的相同的圓錐,底面圓心為O,頂點(diǎn)分別為S和P,四邊形ABCD是圓O的內(nèi)接矩形,連接SA,SD,PC,PB
(1)證明平面SAD∥平面PBC
(2)圓O的圓周上是否存在點(diǎn)M使平面SOM⊥平面SAD,若存在寫(xiě)出存在的理由,并給予證明,若不存在說(shuō)明理由.
(3)若SA=2,AB=BC=2,求三棱錐S-PBC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案