1.若某圓錐的軸截面是頂角為$\frac{2}{3}$π的三角形,則該圓錐的側(cè)面展開(kāi)圖的圓心角為(  )
A.πB.$\frac{2}{3}$πC.$\sqrt{2}$πD.$\sqrt{3}$π

分析 利用圓錐的底面周長(zhǎng)等于圓錐的側(cè)面展開(kāi)圖的弧長(zhǎng),利用弧長(zhǎng)半徑圓心角的公式求解即可.

解答 解:由題意圓錐的母線為:l,底面半徑為:$\frac{\sqrt{3}}{2}l$,圓錐的底面周長(zhǎng)為:$\sqrt{3}l$π,
它的側(cè)面展開(kāi)圖的弧長(zhǎng)為:$\sqrt{3}l$π,
所以它的側(cè)面展開(kāi)圖的圓心角:$\frac{\sqrt{3}lπ}{l}$=$\sqrt{3}$π
故選:D.

點(diǎn)評(píng) 本題考查圓錐的側(cè)面展開(kāi)圖的有關(guān)計(jì)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列有關(guān)平面向量分解定理的四個(gè)命題中:
①一個(gè)平面內(nèi)有且只有一對(duì)不平行的向量可作為表示該平面所有向量的基;
②一個(gè)平面內(nèi)有無(wú)數(shù)多對(duì)不平行向量可作為表示該平面內(nèi)所有向量的基;
③平面向量的基向量可能互相垂直;
④一個(gè)平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個(gè)互不平行向量的線性組合.
正確命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.定義集合運(yùn)算A◇B={c|c=a+b,a∈A,b∈B},設(shè)A={0,1,2},B={2,3,4},則集合A◇B的真子集個(gè)數(shù)為( 。
A.32B.31C.30D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知圓錐的側(cè)面展開(kāi)圖是圓心角為$\frac{2π}{3}$、半徑為6的扇形.則該圓錐的體積為$\frac{{16\sqrt{2}}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在三棱錐P-ABC中,AB=AC,D是BC的中點(diǎn),PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2.
(1)求證:AP⊥BC;
(2)若點(diǎn)M是線段AP是哪個(gè)一點(diǎn),且AM=3.試證明平面AMC⊥平面BMC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,P是橢圓上的一點(diǎn),且P到橢圓兩焦點(diǎn)的距離之和為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l:y=x交橢圓于點(diǎn)D、E,求△PDE面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求證:不論a為任何實(shí)數(shù),直線(a+1)x+(3a+1)y+4=0恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知m、n、l為三條不同的直線.α、β、γ為三個(gè)不同的平面,則下列命題中正確的是( 。
A.若m∥α,n∥α,則m∥n
B.若m⊥n,l⊥n,則m∥l
C.若m∥n,m∥α,則n∥α
D.若m,n是異面直線,m?α,m∥β.n?β,n∥α,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知點(diǎn)P是圓O:x2+y2=1上的任意一點(diǎn),定點(diǎn)A(4,0),B(s,0)(s≠4).
(1)若P是第一象限內(nèi)的點(diǎn),過(guò)點(diǎn)P作圓O的切線與x軸、y軸交于M、N兩點(diǎn).求|MN|的最小值;
(2)若存在常數(shù)t,使得|PA|=$\frac{1}{t}$|PB|恒成立,求s,t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案