已知
1+sinα
cosα
=-
1
2
,則
cosα
1-sinα
的值是( 。
A、
1
2
B、-
1
2
C、2
D、-2
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:利用同角三角函數(shù)間的基本關(guān)系得到sin2α+cos2α=1,變形后計算即可求出所求式子的值.
解答: 解:∵sin2α+cos2α=1,
∴cos2α=1-sin2α=(1+sinα)(1-sinα),
1+sinα
cosα
=
cosα
1-sinα
=-
1
2

故選:B.
點評:此題考查了同角三角函數(shù)基本關(guān)系的應(yīng)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于不等式的說法正確的是( 。
A、若a>b,則
1
a
1
b
B、若a>b,則a2>b2
C、若0>a>b,則
1
a
1
b
D、若0>a>b,則a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|y=
x2-4
},B={x|x2-2x-3≤0},則A∩B=( 。
A、[2,3]
B、(-∞,-2]∪(3,+∞)
C、(-∞,-2]∪[3,+∞)
D、[-2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=2
3
,b=4,則角A的取值范圍為(  )
A、(0,
π
6
]
B、(0,
π
3
]
C、(0,
3
]
D、(
π
3
,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=sin(2x+
π
3
)的圖象,下列說法正確的有( 。
①關(guān)于(
π
3
,0)成中心對稱      ②關(guān)于x=
π
12
成軸對稱 
③在[-
π
3
,
π
12
]上單調(diào)遞增       ④將f(x)向左平移
π
12
后,所得圖象關(guān)于y軸對稱.
A、①②③④B、①②③
C、②③④D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b滿足a+b>0,b<0,則a,b,-a,-b的大小關(guān)系是( 。
A、a>-b>b>-a
B、a>b>-b>-a
C、a>-b>-a>b
D、a>b>-a>-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為
1
5
和P.
(Ⅰ)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為
19
20
,求P的值;
(Ⅱ)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-8y+12=0,直線l經(jīng)過點D(-2,0),且斜率為k.
(1)求以線段CD為直徑的圓E的方程;
(2)若直線l與圓C相離,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:正方形ABCD與正方形ABEF不共面,N、M分別在AE和BD上,AN=DM.
求證:MN∥平面BCE.

查看答案和解析>>

同步練習(xí)冊答案