【題目】將函數(shù)f(x)=sin(x+ )圖象上各點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再把得到的圖象向右平移 個單位,得到的新圖象的函數(shù)解析式為g(x)= , g(x)的單調(diào)遞減區(qū)間是

【答案】sin(2x+ );(kπ+ ,kπ+ ),k∈Z
【解析】解:函數(shù)y=sin(x+ )圖象上各點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),得到函數(shù)y=sin(2x+ )圖象,
再將函數(shù)y=sin(2x+ )圖象向右平移 個單位,
所得圖象的函數(shù)解析式為g(x)=sin[2(x﹣ )+ )]=sin(2x+ ),
令2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,解得:kπ+ ≤x≤kπ+ ,k∈Z,
可得g(x)的單調(diào)遞減區(qū)間是:(kπ+ ,kπ+ ),k∈Z.
所以答案是:=sin(2x+ ),(kπ+ ,kπ+ ),k∈Z.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3+x,x∈R,當(dāng) 時,f(msinθ)+f(1﹣m)>0恒成立,則實數(shù)m的取值范圍是(
A.(0,1)
B.(﹣∞,0)
C.
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)行進(jìn)價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.

(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關(guān)系式;

(2)寫出利潤(元)與單價(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),對任意的,均有.當(dāng)時,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sna1=1,an1Sn(n=1,2,3,…).

(1)求數(shù)列{an}的通項公式;

(2)當(dāng)bn (3an1),求證:數(shù)列的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且tanC= ,c=﹣3bcosA.
(1)求tanB的值;
(2)若c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面幾何里,有“若△ABC的三邊長分別為a,b,c,內(nèi)切圓半徑為r,則三角形面積為SABC (abc)r”,拓展到空間,類比上述結(jié)論,“若四面體ABCD的四個面的面積分別為S1,S2,S3,S4,內(nèi)切球的半徑為r,則四面體的體積為________”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村計劃建造一個室內(nèi)面積為800平米的矩形蔬菜溫室,在溫室內(nèi)沿左右兩側(cè)與后墻內(nèi)側(cè)各保留1米的通道,沿前側(cè)內(nèi)墻保留3米寬的空地,當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大的種植面積是多少?

查看答案和解析>>

同步練習(xí)冊答案