精英家教網 > 高中數學 > 題目詳情
已知:雙曲線的頂點坐標(0,1),(0,-l),離心率,又拋物線的焦點與雙曲線一個焦點重合.
(1)求拋物線的方程;
(2)已知軸上的兩點,過做直線與拋物線交于兩點,試證:直線軸所成的銳角相等.
(3)在(2)的前提下,若直線的斜率為1,問的面積是否有最大值?若有,求出最大值.若沒有,說明理由.
(1) (2)略
(1)由題意,設雙曲線方程為,則解得  ------2分
所以雙曲線兩焦點為,即,
∴拋物線的方程為;-----------------5分
(2)設直線AB方程為,代入拋物線的方程為得:
,
,,則,  -----------------7分
要證直線軸所成的銳角相等,只證明,
=,
所以原命題成立.-------------------9分
(3)由(2)知,k=1時,化為,由,
點Q到AB的距離為,---------10分
-----------11分
,則,令得:
,
和(0,上都是增函數,
是減函數,------------13分
所以無最大值.----------------14分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線x2-3y2=3的右焦點為F,右準線為l,以F為左焦點,以l為左準線的橢圓C的中心為A,又A點關于直線y=2x的對稱點A’恰好在雙曲線的左準線上,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


(12分)已知圓
(1)直線A、B兩點,若的方程;
(2)過圓C上一動點M作平行于x軸的直線m,設m與y軸的交點為N,若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線的頂點為橢圓的中心.橢圓的離心率是拋物線離心率的一半,且它們的準線互相平行。又拋物線與橢圓交于點,求拋物線與橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線的頂點都是橢圓的頂點,直線經過橢圓的一個焦點.⑴求橢圓的方程;⑵拋物線經過橢圓的兩個焦點,與直線相交于、,試將線段的長表示為的函數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點P為拋物線y2=2x上的動點,則點P到直線y=x+2的距離的最小值為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

,則雙曲線的離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


在定義域(-1,1)內可導,且,點A(1,());B((-),1),
對任意∈(-1,1)恒有成立,試在內求滿足不等式(sincos)+(cos2)>0的的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓的左、右焦點分別為、,拋物線的焦點為.若,則此橢圓的離心率為( 。
A      B       C     D

查看答案和解析>>

同步練習冊答案