3.設(shè)f(z)=z-2i,z1=3+4i,z2=-2-i,則f(z1-z2)等于( 。
A.1-5iB.-2+9iC.-2-iD.5+3i

分析 直接利用復(fù)數(shù)的加法,結(jié)合函數(shù)的解析式,求解即可.

解答 解:z1=3+4i,z2=-2-i,則z1-z2=5+5i.
f(z)=z-2i,
則f(z1-z2)=5+5i-2i=5+3i.
故選:D.

點(diǎn)評 本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,函數(shù)解析式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a∈R,函數(shù)f(x)=x|x-a|-a,若對任意的x∈[2,3],f(x)≥0恒成立,則( 。
A.a≤1或a≥$\frac{9}{2}$B.a≤$\frac{4}{3}$或a≥$\frac{7}{2}$C.a≤1或a≥$\frac{7}{2}$D.a≤$\frac{4}{3}$或a≥$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等比數(shù)列{an}中,已知a5-a1=15,a4-a2=6,若公比q>1,則a3=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知三棱錐O-ABC中,∠BOC=90°,OA⊥平面BOC,其中AB=AC=$\sqrt{7}$,BC=$\sqrt{11}$,O,A,B,C四點(diǎn)均在球S的表面上,則球S的表面積為$\frac{25π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求值:
(1)sin(-$\frac{π}{4}$);
(2)cos(-60°);
(3)tan$\frac{7}{6}$π;
(4)sin225°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=2cos(2x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$),則f(x)的值域?yàn)椋?$\sqrt{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右準(zhǔn)線與x軸交于點(diǎn)A,點(diǎn)B的坐標(biāo)為(0,a),若橢圓上的點(diǎn)M滿足$\overrightarrow{AB}$=3$\overrightarrow{AM}$,則橢圓C的離心率值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知命題P:$\lim_{n→∞}{c^n}=0$,其中c為常數(shù),命題Q:把三階行列式$|{\begin{array}{l}{\;5}&2&{3\;}\\{\;x-c}&6&{4\;}\\{\;1}&8&{x\;}\end{array}}|$中第一行、第二列元素的代數(shù)余子式記為f(x),且函數(shù)f(x)在$({-∞\;,\;\frac{1}{4}}]$上單調(diào)遞增.若命題P是真命題,而命題Q是假命題,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=loga(2x+1)在區(qū)間$({-\frac{1}{2},0})$上滿足f(x)>0.
(1)求實(shí)數(shù)a的取值范圍;
(2)若$f(-\frac{1}{4})=1$,畫出函數(shù)g(x)=$\left\{\begin{array}{l}f(x),(x>-\frac{1}{2})\\{2^x},(x≤-\frac{1}{2})\end{array}$的圖象,并解不等式g(x)<$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案