【題目】已知函數(shù),
(1)當,求函數(shù)的值域;
(2)設函數(shù),問:當取何值時,函數(shù)在上為單調(diào)函數(shù);
(3)設函數(shù)的零點為,試討論當時,是否存在,若存在請求出的取值范圍.()
【答案】(1);(2)或;(3)答案見解析.
【解析】
(1)時,,結合二次函數(shù)的性質(zhì)及可得值域;
(2)化函數(shù)為分段函數(shù)形式,,討論兩個函數(shù)的對稱軸,根據(jù)對稱軸與的關系確定單調(diào)性;
(3)根據(jù)二次方程的根和二次函數(shù)的性質(zhì)分類討論,可得的零點情況.
解:(1)當時,,
因為,所以.所以值域為;
(2),
當時,對稱軸是,
當時,函數(shù)遞減,
的對稱軸是,
因此函數(shù)在上遞減,所以在上遞減,
同理,當時,,,
因此在上,遞增,
在上,遞增,
所以在上遞增,
當時,,,
在上遞減,在上遞增,即在上不單調(diào).
綜上所述或;
(3),
當時,恒成立,
,
當時,恒成立,
所以當時,無零點,不存在,
當,只有一個零點4,,
當時,
在兩個零點,且關于對稱,,
當時,
只有一個零點,,
當時,
在兩個零點,且關于對稱,,
當時,
有兩個零點,,
,.
(由和在時都是單調(diào)遞減的易得)
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的兩焦點與短軸兩端點圍成面積為12的正方形.
(1)求橢圓C的標準方程;
(2)我們稱圓心在橢圓上運動,半徑為的圓是橢圓的“衛(wèi)星圓”.過原點O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓C于A、B兩點,若直線、的斜率為、,當時,求此時“衛(wèi)星圓”的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的圖象為C,如下結論中正確的是( )
①圖象C關于直線對稱;②函數(shù)在區(qū)間內(nèi)是增函數(shù);
③圖象C關于點對稱;④由的圖象向右平移個單位長度可以得到圖象C
A.①③B.②③C.①②③D.①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線的斜率為1的切線方程;
(Ⅱ)當時,求證:;
(Ⅲ)設,記在區(qū)間上的最大值為M(a),當M(a)最小時,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在區(qū)間上的函數(shù),若任給,均有,則稱函數(shù)在區(qū)間上是封閉.
(1)試判斷在區(qū)間上是否封閉,并說明理由;
(2)若函數(shù)在區(qū)間上封閉,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不是單調(diào)函數(shù),求實數(shù)的范圍;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍;
(3)當時,設,對任意給定的正實數(shù),曲線上是否存在兩點,,使得是以(為坐標原點)為直角頂點的直角三角形,而且此三角形斜邊中點在軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,則下列說法正確的有( )
A.不等式的解集為;
B.函數(shù)在單調(diào)遞增,在單調(diào)遞減;
C.當時,總有恒成立;
D.若函數(shù)有兩個極值點,則實數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合..
(1)求證:平面平面;
(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com