求下列動圓圓心M的軌跡方程:
(1)與圓C:(x+2﹚2+y2=2內(nèi)切,且過點A(2,0);
(2)與圓C1:x2+﹙y-1﹚2=1和圓C2:x2+﹙y+12)=4都外切.
考點:軌跡方程
專題:綜合題,直線與圓
分析:(1)設(shè)動圓圓心為M(x,y),則|MA|-|MC|=
2
<|AC|=4,因此點M的軌跡是以A、C為焦點的雙曲線的左支;
(2)設(shè)動圓圓心M(x,y),動圓M與C1、C2的切點分別為A、B,則|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|,從而可得|MC2|-|MC1|=2,利用雙曲線的定義,即可求動圓圓心M的軌跡方程.
解答: 解:(1)設(shè)動圓圓心為M(x,y),則
∴|MA|-|MC|=
2
<|AC|=4
因此點M的軌跡是以A、C為焦點的雙曲線的左支.
其中a=
2
2
,c=2,b=
14
2

其方程是:
x2
1
2
-
y2
7
2
=1
(x<0);
(2)設(shè)動圓圓心為M(x,y),半徑為r,則
設(shè)動圓圓心M(x,y),動圓M與C1、C2的切點分別為A、B,則|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.
又∵|MA|=|MB|,
∴|MC2|-|MC1|=|BC2|-|AC1|=2-1=1,
即|MC2|-|MC1|=1,
又∵|C1C2|=2,
由雙曲線定義知:動點M的軌跡是以C1、C2為焦點,中心在原點的雙曲線的上支.
∵2a=1,2c=2,∴a=
1
2
,c=1,
∴b2=
3
4

其方程是:
y2
1
4
-
x2
3
4
=1
(y>0).
點評:本題考查圓與圓的位置關(guān)系,考查雙曲線的定義,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,P是平面ABCD外一點,P在平面ABCD的射影O恰在AD上,PA=AB=BC=2AO=2,BO=
3

(1)證明:PA⊥BO;
(2)求二面角A-BP-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=45°,四邊形BCC1B1為矩形,若AC=5,AB=4,BC=3
(1)求證:AB1⊥面A1BC;
(2)求二面角C-AA1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
mx2+8x+n
x2+1
定義域為(-∞,+∞),值域為[1,9],求m,n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式x2-2ax+2>0在x∈(-1,2)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=3,點E在棱PB上,且PE=2EB.
(Ⅰ)求證:平面PAB⊥平面PCB;
(Ⅱ)求證:PD∥平面EAC;
(Ⅲ)求平面AEC和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.

(1)證明:面BCN⊥面C1NB1
(2)求平面CNB1與平面C1NB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2.在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.
(Ⅰ)求證:BC⊥AF;
(Ⅱ)若二面角D-AF-C為45°,求CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的左、右焦點為F1、F2,過F2的直線與雙曲線右支相交于A、B兩點,若|AF1|、|AB|、|BF2|依次成等差數(shù)列,則|AB|=
 

查看答案和解析>>

同步練習冊答案