A. | O,A,B,C四點(diǎn)任意三點(diǎn)不共線 | B. | O,A,B,C四點(diǎn)不共面 | ||
C. | A,B,C三點(diǎn)共線 | D. | 存在實(shí)數(shù)x,y,z,使x $\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=$\overrightarrow{0}$ |
分析 根據(jù)空間向量是基本定理,當(dāng)向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$不共面時(shí),能組成空間的一組基底,由此判斷即可.
解答 解:對(duì)于A,“O,A,B,C”四點(diǎn)中任意三點(diǎn)不共線時(shí),如平面四邊形OABC,此時(shí)$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共面,
不能構(gòu)成空間的-個(gè)基底;
對(duì)于B,“O,A,B,C”四點(diǎn)不共面時(shí),$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不共面,能構(gòu)成空間的-個(gè)基底;
對(duì)于C,“A,B,C”三點(diǎn)共線時(shí),$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共面,不能構(gòu)成空間的-個(gè)基底;
對(duì)于D,存在實(shí)數(shù)x,y,z,使x $\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=$\overrightarrow{0}$時(shí),$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共面,不能構(gòu)成空間的-個(gè)基底.
故選:B.
點(diǎn)評(píng) 本題考查了空間向量基本定理的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 335 | B. | 336 | C. | 338 | D. | 2 016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ab有最大值$2\sqrt{2}+1$ | B. | ab有最小值${(\sqrt{2}+2)^2}$ | C. | ab有最小值${(\sqrt{2}+1)^2}$ | D. | ab有最大值$2(\sqrt{2}+1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | $(\frac{2}{3},2)$ | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥3 | B. | a≤3 | C. | a≥0 | D. | a≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com