【題目】下列說(shuō)法中正確的有(
①冪函數(shù)的圖象一定不過第四象限;
②已知常數(shù)a>0且a≠1,則函數(shù)f(x)=ax1﹣1恒過定點(diǎn)(1,0);
③若存在x1 , x2∈I,當(dāng)x1<x2時(shí),f(x1)<f(x2),則y=f(x)在I上是增函數(shù);
的單調(diào)減區(qū)間是(﹣∞,0)∪(0,+∞).
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

【答案】C
【解析】解:對(duì)于①,y=xα中,當(dāng)x>0時(shí),xα不可能為負(fù),冪函數(shù)的圖象一定不過第四象限中,當(dāng)x>0時(shí),不可能為負(fù),故正確;
對(duì)于②,常數(shù)a>0且a≠1,a0=1,則函數(shù)f(x)=ax1﹣1恒過定點(diǎn)(1,0),故正確;
對(duì)于③,若任意x1 , x2∈I,當(dāng)x1<x2時(shí),f(x1)<f(x2),則y=f(x)在I上是增函數(shù),故錯(cuò);
對(duì)于④, 的單調(diào)減區(qū)間是(﹣∞,0),(0,+∞),不能用∪,是兩個(gè)獨(dú)立區(qū)間,故錯(cuò).
故選:C.
【考點(diǎn)精析】利用命題的真假判斷與應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為

(1)求曲線的普通方程及直線的直角坐標(biāo)方程;

(2)設(shè)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)= ,則f(1)=;不等式f(f(x))≤7的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1), ,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),f'(x)是函數(shù)f'(x)的導(dǎo)函數(shù).對(duì)于三次函數(shù)y=f(x),若方程f'(x0)=0,則點(diǎn)( )即為函數(shù)y=f(x)圖象的對(duì)稱中心.設(shè)函數(shù)f(x)= ,則f( )+f( )+f( )+…+f( )=(
A.1008
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且a2=2,S5=15.
(1)求通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=2an﹣an , 求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)f(x)的圖象與x軸交于(﹣2,0),(4,0)兩點(diǎn),且頂點(diǎn)為(1,﹣ ).
(1)求f(x)的函數(shù)解析式;
(2)指出圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)分析函數(shù)的單調(diào)性,求函數(shù)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用min{a,b,c}表示a,b,c三個(gè)數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為(
A.7
B.6
C.5
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), ).

(1)求函數(shù)的單調(diào)增區(qū)間;

(2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案