【題目】已知橢圓的左,右焦點(diǎn)分別為,離心率為上的一個(gè)動(dòng)點(diǎn).當(dāng)的上頂點(diǎn)時(shí),的面積為

1)求的方程;

2)設(shè)斜率存在的直線的另一個(gè)交點(diǎn)為.若存在點(diǎn),使得,求的取值范圍.

【答案】(1);(2)

【解析】

1)結(jié)合橢圓性質(zhì),計(jì)算a,b的值,得到橢圓方程,即可。(2)設(shè)出直線PQ的方程,代入橢圓方程,利用韋達(dá)定理,建立等式,用k表示t,結(jié)合函數(shù)的性質(zhì),計(jì)算范圍,即可。

(1)設(shè)橢圓的半焦距為c。

因?yàn)?/span>,所以,,

,

所以.

所以C得方程為

(2)設(shè)直線PQ的方程為,PQ的中點(diǎn)為.

當(dāng)k=0時(shí),t=0符合題意.

當(dāng)k≠0時(shí),由

所以

因?yàn)?/span>,

所以TNPQ,則KTN·k=-1,

所以

因?yàn)?/span>,所以.

綜上,t的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求不等式的解集;

(2)若直線的圖象所圍成的多邊形面積為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為邊長為的菱形,中點(diǎn),連接.

(Ⅰ)求證:平面平面;

(Ⅱ)若平面平面,且二面角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一個(gè)向量組,令,如果存在,使得,那么稱是該向量組的“長向量”

1)若是向量組的“長向量”,且,求實(shí)數(shù)的取值范圍;

2)已知,,均是向量組的“長向量”,試探究,的等量關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型工廠招聘到一大批新員工.為了解員工對(duì)工作的熟練程度,從中隨機(jī)抽取100人組成樣本,并統(tǒng)計(jì)他們的日加工零件數(shù),得到以下數(shù)據(jù);

(1)已知日加工零件數(shù)在范圍內(nèi)的5名員工中,有3名男工,2名女工,現(xiàn)從中任取兩名進(jìn)行指導(dǎo),求他們性別不同的概率;

(2)完成頻率分布直方圖,并估計(jì)全體新員工每天加工零件數(shù)的平均數(shù)(每組數(shù)據(jù)以中點(diǎn)值代替);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文中回文句,如:“黃山落葉松葉落山黃,西湖垂柳絲柳垂湖西.”,倒過來讀完全一樣,數(shù)學(xué)中也有類似現(xiàn)象,無論從左往右讀,還是從右往左讀,都是同一個(gè)數(shù),稱這樣的數(shù)為回文數(shù)”!二位的回文數(shù)有11,22,3344,55,66,7788,99,共9個(gè);三位的回文數(shù)有101,111,121,131,969,979989,999,共90個(gè);四位的回文數(shù)有1001,1111,1221,9669,9779,9889,999,共90個(gè);五位的回文數(shù)有10001,11111,12221,,96669,97779,9888999999900個(gè),由此推測(cè):10位的回文數(shù)總共有_______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的菱形,是等邊三角形,,,分別是的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求直線所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,且的面積為

1)求橢圓的方程;

2)設(shè)直線與橢圓交于、兩點(diǎn),為坐標(biāo)原點(diǎn),軸上是否存在點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

3)設(shè)為橢圓上非長軸頂點(diǎn)的任意一點(diǎn),為線段上一點(diǎn),若的內(nèi)切圓面積相等,求證:線段的長度為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案