【題目】如圖,已知四棱錐的底面為邊長(zhǎng)為的菱形,中點(diǎn),連接.

(Ⅰ)求證:平面平面

(Ⅱ)若平面平面,且二面角的余弦值為,求四棱錐的體積.

【答案】(Ⅰ)見(jiàn)證明;(Ⅱ)2.

【解析】

(Ⅰ)連接,在菱形中可得,又,進(jìn)而可得平面,于是得到平面,所以可得結(jié)論成立.(Ⅱ)建立空間直角坐標(biāo)系,設(shè),二面角的余弦值為可得,即,然后根據(jù)椎體的體積公式求解即可.

(Ⅰ)連接,

∵菱形中,,

為等邊三角形,又中點(diǎn),

,則,

,

平面

,

平面

平面,

∴平面平面.

(Ⅱ)∵平面 平面,且交線(xiàn)為,,平面,

,

為原點(diǎn),所在直線(xiàn)分別為軸,軸,軸建立空間直角坐標(biāo)系

設(shè),則

設(shè)平面的一個(gè)法向量為,

,即,可取

又平面的法向量可取,

由題意得,

解得,即,

又菱形的面積,

∴四棱錐的體積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面且邊長(zhǎng)為的菱形,側(cè)面為正三角形,其所在平面垂直于底面,若的中點(diǎn),的中點(diǎn).

1)求證:平面;

2)求證:

3)在棱上是否存在一點(diǎn),使平面平面,若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于概率和統(tǒng)計(jì)的幾種說(shuō)法:①10名工人某天生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是1517,1410,1517,17,16,14,12,設(shè)其平均數(shù)為,中位數(shù)為,眾數(shù)為,則,的大小關(guān)系為;②樣本4,21,0,-2的標(biāo)準(zhǔn)差是2;③在面積為內(nèi)任選一點(diǎn),則隨機(jī)事件的面積小于的概率為;④從寫(xiě)有0,1,2,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是.其中正確說(shuō)法的序號(hào)有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見(jiàn)于公園與旅游景點(diǎn).某師傅制作了一種新造型糖畫(huà),為了合理定價(jià),先進(jìn)行試銷(xiāo)售,其單價(jià)x(元)與銷(xiāo)量y(個(gè))相關(guān)數(shù)據(jù)如表:

單價(jià)x(元)

8.5

9

9.5

10

10.5

銷(xiāo)量y(個(gè))

12

11

9

7

6

1)已知銷(xiāo)量y與單價(jià)x具有線(xiàn)性相關(guān)關(guān)系,求y關(guān)于x的線(xiàn)性回歸方程;

2)若該新造型糖畫(huà)每個(gè)的成本為5.7元,要使得進(jìn)入售賣(mài)時(shí)利潤(rùn)最大,請(qǐng)利用所求出的線(xiàn)性回歸方程確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))

參考公式:線(xiàn)性回歸方程yx中斜率和截距最小二乘法估計(jì)計(jì)算公式:.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,棱長(zhǎng)為的正方形中,點(diǎn)分別是邊,上的點(diǎn),且,將,沿,折起,使得,兩點(diǎn)重合于點(diǎn)上,設(shè)交于點(diǎn),過(guò)點(diǎn)點(diǎn).

(1)求證:平面

(2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形為矩形,平面,連接,,,,,則下列各組向量中,數(shù)量積不為零的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為.

1)求橢圓的方程;

2)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線(xiàn)軸的交點(diǎn),點(diǎn)軸的負(fù)半軸上.若為原點(diǎn)),且,求證:直線(xiàn)的斜率與直線(xiàn)MN的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,離心率為,上的一個(gè)動(dòng)點(diǎn).當(dāng)的上頂點(diǎn)時(shí),的面積為

1)求的方程;

2)設(shè)斜率存在的直線(xiàn)的另一個(gè)交點(diǎn)為.若存在點(diǎn),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖北省2019年新高考方案公布,實(shí)行“”模式,即“3”是指語(yǔ)文、數(shù)學(xué)、外語(yǔ)必考,“1”是指物理、歷史兩科中選考一門(mén),“2”是指生物、化學(xué)、地理、政治四科中選考兩門(mén),在所有選科組合中某學(xué)生選擇考?xì)v史和化學(xué)的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案