橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)A(2,1),離心率e=
3
2

(1)求橢圓方程;
(2)過直線y=2上的點(diǎn)P作橢圓的兩條切線,切點(diǎn)分別為B,C
①求證:直線BC過定點(diǎn);
②求△OBC面積的最大值;
參考公式:過橢圓
x2
a2
+
y2
b2
=1上點(diǎn)(x0,y0)的切線方程為
x0x
a2
+
y0y
b2
=1.
考點(diǎn):橢圓的簡單性質(zhì),直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)A(2,1),離心率e=
3
2
,建立方程,求出a,b,即可求橢圓方程;
(2)①求出切線PB,PC的方程,代入P,即可得出結(jié)論;
②表示出面積,利用配方法,即可求△OBC面積的最大值.
解答: (1)解:∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)A(2,1),離心率e=
3
2
,
4
a2
+
1
b2
=1
,
c
a
=
3
2
,
∴a2=8,b2=2,
∴橢圓方程為
x2
8
+
y2
2
=1

(2)①證明:設(shè)P(x0,2),B(x1,y1),C(x2,y2),
則切線PB:
x1x
8
+
y1y
2
=1
,PC:
x2x
8
+
y2y
2
=1
,
P(x0,2)代入,可得直線BC的方程為
x0x
8
+y=1,
∴直線BC過定點(diǎn)(0,1);
x0x
8
+y=1代入橢圓方程可得(1+
x02
16
)x2-x0x-4=0,
∴x1+x2=
x0
1+
x02
16
,x1x2=
-4
1+
x02
16
,
∴S△OBC=
1
2
|x1-x2|=
8
2x02+16
x02+16
,
令u=x02+16,則S△OBC=8
-16(
1
u
-
1
16
)2+
1
16
≤2,
∴△OBC面積的最大值為2.
點(diǎn)評:本題考查橢圓的方程,考查橢圓的性質(zhì),考查三角形面積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={1,2},B={2,3,4},則A∩B=( 。
A、{2}
B、{1,2}
C、{1,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=mx的焦點(diǎn)與雙曲線
x2
3
-y2=1的左焦點(diǎn)重合,則這條拋物線的方程為(  )
A、y2=4x
B、y2=-4x
C、y2=-4
2
x
D、y2=-8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
lnx
1+x
-lnx,f(x)在x=x0處取得最大值,以下各式正確的序號為( 。
①x0
1
2
;
②x0
1
2
;
③f(x0)<x0;
④f(x0)=x0
⑤f(x0)>x0
A、①③B、①④C、②④D、②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3sin3x,則f′(1)=( 。
A、3sin3+3cos3
B、3sin3-3cos3
C、3sin3+cos3
D、3sin3-cos3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=[x2+(a-3)x-2a+3]•ex
(1)求f(x)的遞增區(qū)間;
(2)a≥1時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

生物體死亡后,它機(jī)體內(nèi)原有的碳14會按確定的規(guī)律衰減,大約每經(jīng)過5730年衰減為原來的一半,這個時間稱為“半衰期”.
(1)根據(jù)這個規(guī)律,寫出生物體內(nèi)碳14的含量p與死亡年數(shù)t之間的函數(shù)關(guān)系式.
(2)湖南長沙馬王堆漢墓女尸出土?xí)r碳14的殘余量約占原始含量的76.7%,試推算馬王堆漢墓的年代.(精確到個位;輔助數(shù)據(jù):log20.767≈-0.3827)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x

(1)求f(x)在點(diǎn)(1,0)處的切線方程;
(2)求f(x)在[1,e2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
1
3
,且-
π
2
<α<0,求
sin(2π+α)
tan(-α-π)cos(-α)•tanα
的值.

查看答案和解析>>

同步練習(xí)冊答案