【題目】橢圓上一點關于原點的對稱點為, 為其右焦點,若,設,且,則該橢圓離心率的最大值為(

A. B. C. D. 1

【答案】A

【解析】由題知AFBF,根據(jù)橢圓的對稱性,AFBF(其中F是橢圓的左焦點),因此四邊形AFBF是矩形,于是,|AB|=|FF|=2c , ,根據(jù)橢圓的定義,|AF|+|AF|=2a,

∴橢圓離心率,

,

e的最大值為,故選A.

橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:

①求出a,c,代入公式;

②只需要根據(jù)一個條件得到關于a,b,c的齊次式,結(jié)合b2a2c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以aa2轉(zhuǎn)化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設一半徑為米,圓心角為(弧度)的扇形觀景水池,其中 為扇形的圓心,同時緊貼水池周邊(即: 所對的圓弧)建設一圈理想的無寬度步道.要求總預算費用不超過24萬元,水池造價為每平方米400元,步道造價為每米1000元.

(1)若總費用恰好為24萬元,則當分別為多少時,可使得水池面積最大,并求出最大面積;

(2)若要求步道長為105米,則可設計出的水池最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2-a)lnx++2ax.

(1)當a<0時,討論f(x)的單調(diào)性;

(2)若對任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln 3)a-2ln 3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生的身體狀況,某校隨機抽取了一批學生測量體重,經(jīng)統(tǒng)計,這批學生的體重數(shù)據(jù)(單位:千克)全部介于之間,將數(shù)據(jù)分成以下組,第一組,第二組,第三組,第四組,第五組,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第、、組中隨機抽取名學生做初檢.

)求每組抽取的學生人數(shù).

)若從名學生中再次隨機抽取名學生進行復檢,求這名學生不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,已知點是離心率為的橢圓 上的一點,斜率為的直線交橢圓、兩點,且、、三點互不重合.

1)求橢圓的方程;

2)求證:直線, 的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某石化集團獲得了某地深海油田區(qū)塊的開采權(quán),集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見如表:

(參考公式和計算結(jié)果:

,

(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計的預報值.

(2)現(xiàn)準備勘探新井,若通過1,3,5,7號并計算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(3)設出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井數(shù)的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2張邊長均為1分米的正方形紙片分別按甲、乙兩種方式剪裁并廢棄陰影部分

1)在圖甲的方式下,剩余部分恰能完全覆蓋某圓錐的表面,求該圓錐的母線長及底面

半徑;

2)在圖乙的方式下,剩余部分能完全覆蓋一個長方體的表面,求長方體體積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某互聯(lián)網(wǎng)理財平臺為增加平臺活躍度決定舉行邀請好友拿獎勵活動,規(guī)則是每邀請一位好友在該平臺注冊,并購買至少1萬元的12月定期,邀請人可獲得現(xiàn)金及紅包獎勵,現(xiàn)金獎勵為被邀請人理財金額的,且每邀請一位最高現(xiàn)金獎勵為300元,紅包獎勵為每邀請一位獎勵50元.假設甲邀請到乙、丙兩人,且乙、丙兩人同意在該平臺注冊,并進行理財,乙、丙兩人分別購買1萬元、2萬元、3萬元的12月定期的概率如下表:

理財金額

萬元

萬元

萬元

乙理財相應金額的概率

丙理財相應金額的概率

(1)求乙、丙理財金額之和不少于5萬元的概率;

(2)若甲獲得獎勵為元,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校從參加安全知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù),成績分記為優(yōu)秀)分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:

(1)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;

(2)從頻率分布直方圖中,估計本次考試的平均分;

(3)為參加市里舉辦的安全知識競賽,學校舉辦預選賽.已知在學校安全知識競賽中優(yōu)秀的同學通過預選賽的概率為,現(xiàn)在從學校安全知識競賽中優(yōu)秀的同學中選3人參加預選賽,若隨機變量表示這3人中通過預選賽的人數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案