【題目】已知命題:函數(shù)在定義域上單調(diào)遞增;命題:在區(qū)間上恒成立.

1)如果命題為真命題,求實數(shù)的值或取值范圍;

2)命題“”為真命題,”為假命題,求實數(shù)的取值范圍.

【答案】12

【解析】

1)先由命題為真命題,得上恒成立,根據(jù)一元二次不等式恒成立,即可求出結果;

2)先由在區(qū)間上恒成立,得到,即命題;再由題意,得到一真一假,分別討論假,真兩種情況,即可得出結果.

1)若命題為真命題,則函數(shù)在定義域上單調(diào)遞增,

上恒成立,

,即

2)若在區(qū)間上恒成立,則在區(qū)間上恒成立,

因此,只需;即命題

由命題“”為真命題,”為假命題,可知一真一假,

假,則,無解;

,,即;

綜上所述,,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐的底面是矩形,側面是正三角形,,,.

(1)求證:平面平面;

(2)若中點,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù),若關于的方程8個不等的實數(shù)根,則的取值范圍是_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求的值域;

(2)若存在唯一的整數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學習了文明乘車規(guī)范.社區(qū)委員會針對居民的學習結果進行了相關的問卷調(diào)查,并將得到的分數(shù)整理成如圖所示的統(tǒng)計圖.

(Ⅰ)求得分在上的頻率;

(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

(Ⅲ)以頻率估計概率,若在全部參與學習的居民中隨機抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線l:y=2x﹣1與雙曲線,)相交于A、B兩個不

同的點,且(O為原點).

(1)判斷是否為定值,并說明理由;

(2)當雙曲線離心率時,求雙曲線實軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如上圖所示,在正方體中, 分別是棱的中點, 的頂點在棱與棱上運動,有以下四個命題:

A.平面 ; B.平面⊥平面

C 在底面上的射影圖形的面積為定值;

D 在側面上的射影圖形是三角形.其中正確命題的序號是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且過點P。

(1)求橢圓的標準方程;

(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,為等邊三角形, ,為邊的中點.

(Ⅰ)求證:平面

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案